Chinese Journal of Ship Research, Volume. 17, Issue 3, 1(2022)

Research progress on mechanism and numerical simulation methods of water-air-bubble mixed flow around marine structure

Xiaosong ZHANG1,2, Kangjian HE1,2, and Decheng WAN1,2,3
Author Affiliations
  • 1Computational Marine Hydrodynamics Laboratory, Shanghai Jiao Tong University, Shanghai 200240, China
  • 2School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • 3Ocean College, Zhejiang University, Zhoushan 316021, China
  • show less
    References(145)

    [9] MORI N, KAKUNO S. Aeration and bubble measurements of coastal breaking waves[J]. Fluid Dynamics Research, 40, 616-626(2008).

    [13] KIMMOUN O, BRANGER H. A particle image velocimetry investigation on laboratory surf-zone breaking waves over a sloping beach[J]. Journal of Fluid Mechanics, 558, 353-397(2007).

    [15] SHI F Y, KIRBY J T, MA G F. Modeling quiescent phase transport of air bubbles induced by breaking waves[J]. Ocean Modelling, 35, 105-117(2010).

    [22] TIAN Z L, LIU Y L, ZHANG A M et al. Analysis of breaking and re-closure of a bubble near a free surface based on the Eulerian finite element method[J]. Computers & Fluids, 170, 41-52(2018).

    [26] LIU J R, ZHU C Y, FU T T et al. Systematic study on the coalescence and breakup behaviors of multiple parallel bubbles rising in power-law fluid[J]. Industrial & Engineering Chemistry Research, 53, 4850-4860(2014).

    [39] ZHANG A M, NI B Y. Three-dimensional boundary integral simulations of motion and deformation of bubbles with viscous effects[J]. Computers & Fluids, 92, 22-33(2014).

    [43] CHANSON H. Current knowledge in hydraulic jumps and related phenomena. A survey of experimental results[J]. European Journal of Mechanics-B/Fluids, 28, 191-210(2019).

    [48] GOURICH B, VIAL C, ESSADKI A H et al. Identification of flow regimes and transition points in a bubble column through analysis of differential pressure signal–influence of the coalescence behavior of the liquid phase[J]. Chemical Engineering and Processing: Process Intensification, 45, 214-223(2016).

    [53] ZHENG C X, JAMES D L. Harmonic fluids[J]. ACM Transactions on Graphics, 28, 37(2009).

    [57] XU X X, GONG J. A united model for predicting pressure wave speeds in oil and gas two-phase pipeflows[J]. Journal of Petroleum Science and Engineering, 60, 150-160(2008).

    [65] [65] WANG J H, WAN D C. Breaking wave simulations of highspeed surface combatant using openfoam[C]Proceedings of the 8th International Conference on Computational Methods. Guilin: [s. n. ], 2017.

    [66] CARRICA P M, HUANG J, NOACK R et al. Large-scale DES computations of the forward speed diffraction and pitch and heave problems for a surface combatant[J]. Computers & Fluids, 39, 1095-1111(2010).

    [72] MA J S, OBERAI A A, HYMAN M C et al. Two-fluid modeling of bubbly flows around surface ships using a phenomenological subgrid air entrainment model[J]. Computers & Fluids, 52, 50-57(2011).

    [73] CASTRO A M, CARRICA P M. Eulerian polydispersed modeling of bubbly flows around ships with application to Athena R/V[J]. International Shipbuilding Progress, 60, 403-433(2013).

    [79] [79] KOUZOUBOV A, WOOD S, ELLEM R. Acoustic imaging of surface ship wakes[C]Proceedings of the Internoise 2014 43rd International Congress on Noise Control Engineering: Improving the Wld Through Noise Control. Melbourne, Australia: [s. n. ], 2014: 36853694.

    [81] [81] FU T C, FULLERTON A M, RATCLIFFE T, et al. A detailed study of transom breaking waves[R]. [S. l. ]: Naval Surface Warfare Center Carderock Division, 2009.

    [82] [82] FU T C, FULLERTON A M, DRAZEN D, et al. A detailed study of transom breaking waves. Part II: NSWCCD50TR2010003[R]. [S. l. ]: Naval Surface Warfare Center Carderock Division, 2010.

    [87] STANSBERG C T, PAKOZDI C, ABRAHAMSEN B et al. Hydrodynamic model tests and numerical modelling: exploring the challenging physics in storm waves[J]. Marintek Review, 1, 1-12(2014).

    [94] [94] Center AF flash user''s guide[Z]. Flash Center f Computational Science University of Chicago, 2021.

    [102] [102] JAMTVEIT B, MEAKIN P. Growth, dissolution, pattern fmation in geosystems[M]. Boston: Kluwer Academic Publishers, 1999.

    [108] [108] YOUNGS D L. Timedependent multimaterial flow with large fluid disttion[M]MTON K W, BAINES M J. Numerical Methods f Fluid Dynamics. New Yk: Academic Press, 1982.

    [112] FUSTER D, ARRUFAT T, CRIALESI-ESPOSITO M et al. A momentum-conserving, consistent, volume-of-fluid method for incompressible flow on staggered grids[J]. Computers & Fluids, 104785(2021).

    [113] GHODS S, HERRMANN M. A consistent rescaled momentum transport method for simulating large density ratio incompressible multiphase flows using Level set methods[J]. Physica Scripta, 2013, 014050(2013).

    [115] [115] BUSSMANN M, KOTHE D B, SICILIAN J M. Modeling high density ratio incompressible interfacial flows[C]Proceedings of ASME 2002 Joint U. S. European Fluids Engineering Division Conference. Montreal, Canada: ASME, 2002.

    [116] VAUDOR G, MÉNARD T, ANISZEWSKI W et al. A consistent mass and momentum flux computation method for two phase flows. Application to atomization process[J]. Computers & Fluids, 152, 204-216(2017).

    [123] CUMMINS S J, FRANCOIS M M, KOTHE D B. Estimating curvature from volume fractions[J]. Computers & Structures, 83, 425-434(2005).

    [127] [127] MOHDYUSOF J. Combined immersedboundaryBspline methods f simulations of flows in complex geometries[R]. [S. l. ]: Annual Research Briefs, Center f Turbulence Research, 1997: 317327.

    [128] [128] MAJUMDAR S, IACCARINO G, DURBIN P. RANS solvers with adaptive structured boundary nonconfming grids[R]. Stanfd: Center f Turbulence Research, 2001.

    [132] ZHANG C, LIN N S, TANG Y H et al. A sharp interface immersed boundary/VOF model coupled with wave generating and absorbing options for wave-structure interaction[J]. Computers & Fluids, 89, 214-231(2014).

    [138] [138] LI J J. Contributions to modeling of bubble entrainment f ship hydrodynamics applications[D]. Iowa City: University of Iowa, 2015.

    [140] [140] CLIFT R, GRACE J R, WEBER M E. Bubbles, s particles[M]. San Diego: Academic Press, 1978.

    [141] MA G F, SHI F Y, KIRBY J T. A polydisperse two-fluid model for surf zone bubble simulation[J]. Journal of Geophysical Research: Oceans, 116, C05010(2011).

    [143] RAPP R J, MELVILLE W K. Laboratory measurements of deep-water breaking waves[J]. Philosophical Transactions of the Royal Society A, 331, 735-800(1990).

    [145] MORAGA F J, CARRICA P M, DREW D A et al. A sub-grid air entrainment model for breaking bow waves and naval surface ships[J]. Computers & Fluids, 37, 281-298(2008).

    [146] [146] TAVAKOLINEJAD M. Air bubble entrainment by breaking bow waves simulated by a 2D+ T technique[D]. Maryl: University of Maryl, College Park, 2010.

    [150] [150] PATKAR S, AANJANEYA M, KARPMAN D, et al. A hybrid LagrangianEulerian fmulation f bubble generation dynamics[C]Proceedings of the 12th ACM SIGGRAPHEurographics Symposium on Computer Animation. Anaheim, Califnia: ACM, 2013: 105114.

    [151] [151] HSIAO C T, WU X G, MA J S, et al. Numerical experimental study of bubble entrainment due to a hizontal plunging jet[J] International Shipbuilding Progress, 2013, 60(1234): 435469.

    [152] MA J S, HSIAO C T, CHAHINE G L. A physics based multiscale modeling of cavitating flows[J]. Computers & Fluids, 145, 68-84(2017).

    [153] [153] JAIN D, KUIPERS J A M, DEEN N G. Numerical study of coalescence breakup in a bubble column using a hybrid volume of fluid discrete bubble model approach[J] Chemical Engineering Science, 2014, 119: 134146.

    [155] TOMAR G, FUSTER D, ZALESKI S et al. Multiscale simulations of primary atomization[J]. Computers & Fluids, 39, 1864-1874(2010).

    [157] ZUZIO D, ESTIVALÈZES J L, DIPIERRO B. An improved multiscale Eulerian-Lagrangian method for simulation of atomization process[J]. Computers & Fluids, 176, 285-301(2018).

    [159] YAN K, CHE D F. A coupled model for simulation of the gas-liquid two-phase flow with complex flow patterns[J]. International Journal of Multiphase Flow, 36, 333-348(2021).

    Tools

    Get Citation

    Copy Citation Text

    Xiaosong ZHANG, Kangjian HE, Decheng WAN. Research progress on mechanism and numerical simulation methods of water-air-bubble mixed flow around marine structure[J]. Chinese Journal of Ship Research, 2022, 17(3): 1

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ship Design and Performance

    Received: Jan. 7, 2022

    Accepted: --

    Published Online: Mar. 25, 2025

    The Author Email:

    DOI:10.19693/j.issn.1673-3185.02757

    Topics