Optics and Precision Engineering, Volume. 32, Issue 8, 1199(2024)

Sand microscopic image segmentation with enhanced tuna swarm optimization exponential entropy

Mengfei WANG1, Weixing WANG1、*, Kun XU1, and Limin LI2、*
Author Affiliations
  • 1College of Information, Chang'an University, Xi'an70064, China
  • 2School of Electrical and Electronic Engineering, Wenzhou University, Wenzhou35035, China
  • show less
    References(33)

    [1] [1] 董小龙, 胡修棉, 赖文. 雅鲁藏布江砂粒显微图像数据集[J]. 中国科学数据, 2020, 5(3): 34-43. doi: 10.11922/csdata.2020.0051.zhDONGX L, HUX M, LAIW. A photomicrograph dataset of sand grains from the Yarlung Tsangpo, Tibet[J]. China Scientific Data, 2020, 5(3): 34-43.(in Chinese). doi: 10.11922/csdata.2020.0051.zh

    [2] RAMESH K K D, KUMAR G, SWAPNA K et al. A review of medical image segmentation algorithms[J]. EAI Endorsed Transactions on Pervasive Health and Technology, 169184(2018).

    [3] YARMOHAMMADI S, WOOD D A, KADKHODAIE A. Reservoir microfacies analysis exploiting microscopic image processing and classification algorithms applied to carbonate and sandstone reservoirs[J]. Marine and Petroleum Geology, 121, 104609(2020).

    [4] SAFARI H, BALCOM B J, AFROUGH A. Characterization of pore and grain size distributions in porous geological samples - an image processing workflow[J]. Computers and Geosciences, 156, 104895(2021).

    [5] CHEN Z H, LIU X J, YANG J J et al. Deep learning-based method for SEM image segmentation in mineral characterization, an example from Duvernay Shale samples in Western Canada Sedimentary Basin[J]. Computers and Geosciences, 138, 104450(2020).

    [6] PARE S, KUMAR A, SINGH G K et al. Image segmentation using multilevel thresholding: a research review[J]. Iranian Journal of Science and Technology, Transactions of Electrical Engineering, 44, 1-29(2020).

    [7] LUO G, PAN S K, ZHANG Y L et al. Research on establishing numerical model of geo material based on CT image analysis[J]. EURASIP Journal on Image and Video Processing, 2019, 36(2019).

    [8] WANG C C, ZHAO H, SHENG G L et al. Multi-scale and multi-region pore structure analysis on sandy conglomerate whole core with digital rock model[J]. Journal of Energy Resources Technology, 145(2023).

    [9] WANG M, WANG W, FENG S et al. Adaptive multi-class segmentation model of aggregate image based on improved sparrow search algorithm[J]. KSII Transactions on Internet and Information Systems, 17, 391-411(2023).

    [10] [10] 杨蕴, 李玉, 赵泉华. 高分辨率全色遥感图像多级阈值分割[J]. 光学 精密工程, 2020, 28(10): 2370-2383. doi: 10.37188/OPE.20202810.2370YANGY, LIY, ZHAOQ H. Multi-level threshold segmentation of high-resolution panchromatic remote sensing imagery[J]. Opt. Precision Eng., 2020, 28(10): 2370-2383.(in Chinese). doi: 10.37188/OPE.20202810.2370

    [11] OUCHICHA C, AMMOR O, MEKNASSI M. A new approach based on exponential entropy with modified kernel fuzzy c-means clustering for MRI brain segmentation[J]. Evolutionary Intelligence, 16, 651-665(2023).

    [12] SINGH GILL H, SINGH KHEHRA B, SINGH A et al. Teaching-learning-based optimization algorithm to minimize cross entropy for Selecting multilevel threshold values[J]. Egyptian Informatics Journal, 20, 11-25(2019).

    [13] ZHENG Z, ZHA B T, XUCHEN Y S et al. Adaptive edge detection algorithm based on grey entropy theory and textural features[J]. IEEE Access, 7, 92943-92954(2943).

    [14] WANG Y, ZHANG G B, ZHANG X F. Multilevel image thresholding using tsallis entropy and cooperative pigeon-inspired optimization bionic algorithm[J]. Journal of Bionic Engineering, 16, 954-964(2019).

    [15] ZHANG H, FRITTS J E, GOLDMAN S A. An entropy-based objective evaluation method for image segmentation[C], 38-49(2003).

    [16] [16] 张坤华, 谭志恒, 李斌. 结合粒子群优化和综合评价的脉冲耦合神经网络图像自动分割[J]. 光学 精密工程, 2018, 26(4): 962-970. doi: 10.3788/ope.20182604.0962ZHANGK H, TANZ H, LIB. Automated image segmentation based on pulse coupled neural network with partide swarm optimization and comprehensive evaluation[J]. Opt. Precision Eng., 2018, 26(4): 962-970.(in Chinese). doi: 10.3788/ope.20182604.0962

    [17] DHAL K G et al. Nature-inspired optimization algorithms and their application in multi-thresholding image segmentation[J]. Archives of Computational Methods in Engineering, 27, 855-888(2020).

    [18] MIRJALILI S, GANDOMI A H, MIRJALILI S Z et al. Salp swarm algorithm: a bio-inspired optimizer for engineering design problems[J]. Advances in Engineering Software, 114, 163-191(2017).

    [19] BAIRWA A K, JOSHI S, SINGH D. Dingo optimizer: a nature-inspired metaheuristic approach for engineering problems[J]. Mathematical Problems in Engineering, 2021, 1-2(2021).

    [20] BRAIK M, HAMMOURI A, ATWAN J et al. White Shark Optimizer: a novel bio-inspired meta-heuristic algorithm for global optimization problems[J]. Knowledge-Based Systems, 243, 108457(2022).

    [21] XIE L, HAN T, ZHOU H et al. Tuna swarm optimization: a novel swarm-based metaheuristic algorithm for global optimization[J]. Computational Intelligence and Neuroscience, 2021, 9210050(2021).

    [22] MIRJALILI S. SCA: a Sine Cosine Algorithm for solving optimization problems[J]. Knowledge-Based Systems, 96, 120-133(2016).

    [23] BRAIK M, RYALAT M H, AL-ZOUBI H. A novel meta-heuristic algorithm for solving numerical optimization problems: Ali Baba and the forty thieves[J]. Neural Computing and Applications, 34, 409-455(2022).

    [24] XIAO R G, LIU G Q, YI D R et al. Study on prediction model of liquid holdup based on back propagation neural network optimized by tuna swarm algorithm[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 45, 8623-8641(2023).

    [25] QIN Z B, XU H, JIN Y et al. Multi-strategy improved tuna swarm optimization algorithm for feature selection of network intrusion detection[C], 12717, 681-686(2023).

    [26] NANDA B, MUNI B P, JENA R K. Enhancing power quality in microgrids with hybrid tuna-glowworm swarm optimization strategy for renewable energy sources[J]. Energy Technology, 12, 2300067(2024).

    [27] ALSATTAR H A, ZAIDAN A A, ZAIDAN B B. Novel meta-heuristic bald eagle search optimisation algorithm[J]. Artificial Intelligence Review, 53, 2237-2264(2020).

    [28] ABDOLLAHZADEH B, GHAREHCHOPOGH F S, MIRJALILI S. African vultures optimization algorithm: a new nature-inspired metaheuristic algorithm for global optimization problems[J]. Computers & Industrial Engineering, 158, 107408(2021).

    [29] GOTTHANS T, SPROTT J C, PETRZELA J. Simple chaotic flow with circle and square equilibrium[J]. International Journal of Bifurcation and Chaos, 26, 1650137(2016).

    [30] ZHANG M J, LONG D Y, QIN T et al. A chaotic hybrid butterfly optimization algorithm with particle swarm optimization for high-dimensional optimization problems[J]. Symmetry, 12, 1800(2020).

    [31] TUERXUN W, XU C, GUO H Y et al. An ultra-short-term wind speed prediction model using LSTM based on modified tuna swarm optimization and successive variational mode decomposition[J]. Energy Science & Engineering, 10, 3001-3022(2022).

    [32] KUMAR C, MAGDALIN MARY D. A novel chaotic-driven Tuna Swarm Optimizer with Newton-Raphson method for parameter identification of three-diode equivalent circuit model of solar photovoltaic cells/modules[J]. Optik, 264, 169379(2022).

    [33] HOUSSEIN E H, MOHAMED G M, IBRAHIM I A et al. An efficient multilevel image thresholding method based on improved heap-based optimizer[J]. Scientific Reports, 13, 9094(2023).

    Tools

    Get Citation

    Copy Citation Text

    Mengfei WANG, Weixing WANG, Kun XU, Limin LI. Sand microscopic image segmentation with enhanced tuna swarm optimization exponential entropy[J]. Optics and Precision Engineering, 2024, 32(8): 1199

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 21, 2023

    Accepted: --

    Published Online: May. 29, 2024

    The Author Email: Weixing WANG (wxwang@chd.edu.cn), Limin LI (wxwang@chd.edu.cn)

    DOI:10.37188/OPE.20243208.1199

    Topics