Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 742(2025)
Optimization of Thermoelectric Performance of CaTiO3-Based Materials by Dy/Nb Co-Doping
[1] [1] ZEBARJADI M, ESFARJANI K, DRESSELHAUS M S, et al. Perspectives on thermoelectrics: From fundamentals to device applications[J]. Energy Environ Sci, 2012, 5(1): 5147–5162.
[3] [3] TIAN Z, WANG J, YAER X B, et al. Pencil painting like preparation for flexible thermoelectric material of high-performance p-type Na1.4Co2O4 and novel n-type NaxCo2O4[J]. J Materiomics, 2021, 7(5): 1153–1160.
[4] [4] SARKAR D, GHOSH T, BANIK A, et al. Highly converged valence bands and ultralow lattice thermal conductivity for high-performance SnTe thermoelectrics[J]. Angew Chem Int Ed Engl, 2020, 59(27): 11115–11122.
[7] [7] XIAO Y, WANG D Y, ZHANG Y, et al. Band sharpening and band alignment enable high quality factor to enhance thermoelectric performance inn-type PbS[J]. J Am Chem Soc, 2020, 142(8): 4051–4060.
[8] [8] BANIK A, SHENOY U S, SAHA S, et al. High power factor and enhanced thermoelectric performance of SnTe-AgInTe2: Synergistic effect of resonance level and valence band convergence[J]. J Am Chem Soc, 2016, 138(39): 13068–13075.
[9] [9] ZHENG L L, LI W, LIN S Q, et al. Interstitial defects improving thermoelectric SnTe in addition to band convergence[J]. ACS Energy Lett, 2017, 2(3): 563–568.
[10] [10] ZHANG Q, LIAO B L, LAN Y C, et al. High thermoelectric performance by resonant dopant indium in nanostructured SnTe[J]. Proc Natl Acad Sci USA, 2013, 110(33): 13261–13266.
[11] [11] BANIK A, VISHAL B, PERUMAL S, et al. The origin of low thermal conductivity in Sn1−xSbxTe: Phonon scattering via layered intergrowth nanostructures[J]. Energy Environ Sci, 2016, 9(6): 2011–2019.
[12] [12] MOSHWAN R, SHI X L, LIU W D, et al. Enhancing thermoelectric properties of InTe nanoprecipitate-embedded Sn1–xInxTe microcrystals through anharmonicity and strain engineering[J]. ACS Appl Energy Mater, 2019, 2(4): 2965–2971.
[13] [13] LI J B, WANG Y X, JIANG X, et al. Emerging homogeneous superlattices in CaTiO3 bulk thermoelectric materials[J]. Mater Horiz, 2023, 10(2): 454–465.
[15] [15] XIAO Y, WU H J, LI W, et al. Remarkable roles of Cu to synergistically optimize phonon and carrier transport in n-type PbTe-Cu2Te[J]. J Am Chem Soc, 2017, 139(51): 18732–18738.
[16] [16] ZHOU Y M, WU H J, PEI Y L, et al. Strategy to optimize the overall thermoelectric properties of SnTeviacompositing with its property-counter CuInTe2[J]. Acta Mater, 2017, 125: 542–549.
[17] [17] LI F, LIU X, LI S R, et al. Rare three-valence-band convergence leading to ultrahigh thermoelectric performance in all-scale hierarchical cubic SnTe[J]. Energy Environ Sci, 2024, 17(1): 158–172.
[18] [18] LI J, ZHANG X Y, CHEN Z W, et al. Low-symmetry rhombohedral GeTe thermoelectrics[J]. Joule, 2018, 2(5): 976–987.
[19] [19] LI J, ZHANG X Y, WANG X, et al. High-performance GeTe thermoelectrics in both rhombohedral and cubic phases[J]. J Am Chem Soc, 2018, 140(47): 16190–16197.
[20] [20] BOUDALI A, ABADA A, DRISS KHODJA M, et al. Calculation of structural, elastic, electronic, and thermal properties of orthorhombic CaTiO3[J]. Phys B Condens Matter, 2010, 405(18): 3879–3884.
[21] [21] LI J B, WANG Y X, YANG X, et al. Processing bulk insulating CaTiO3 into a high-performance thermoelectric material[J]. Chem Eng J, 2022, 428: 131121.
[22] [22] LI J B, JIANG Q W, TIAN Z, et al. Controlling precipitation and dopant effects to achieve promising thermoelectric performance in CaTiO3[J]. ACS Appl Energy Mater, 2023, 6(15): 8053–8062.
[23] [23] JIANG Q W, LI G S, WANG X H, et al. Enhanced thermoelectric properties for eco-friendly CaTiO3 by band sharpening and atomic-scale defect phonon scattering[J]. Mater Today Energy, 2024, 44: 101655.
[24] [24] TAN G J, ZHAO L D, SHI F Y, et al. High thermoelectric performance of p-type SnTeviaa synergistic band engineering and nanostructuring approach[J]. J Am Chem Soc, 2014, 136(19): 7006–7017.
[25] [25] MAO J, LIU Z H, ZHOU J W, et al. Advances in thermoelectrics[J]. Adv Phys, 2018, 67(2): 69–147.
[26] [26] QIAN X, ZHANG X X, GUO H R, et al. Enhancing thermoelectric performance of n-type AgBi3S5 through synergistically optimizing the effective mass and carrier mobility[J]. J Materiomics, 2023, 9(5): 874–881.
[27] [27] WANG X Y, YAO H H, YIN L, et al. Band modulation and strain fluctuation for realizing high averagezTin GeTe[J]. Adv Energy Mater, 2022, 12(26): 2201043.
[28] [28] XIAO X X, WIDENMEYER M, XIE W J, et al. Influence of Nb substitution and sintering atmosphere on thermoelectric properties of CaTiO3-based ceramics[J]. Solid State Sci, 2024, 149: 107467.
[29] [29] XIAO X X, ARIF S, DING J X, et al. Molten salt synthesized La- substituted CaTiO3 thermoelectric ceramics[J]. Open Ceram, 2024, 17: 100522.
Get Citation
Copy Citation Text
JIANG Quanwei, TIAN Zhen, LI Jianbo, SHI Xiaowei, KANG Huijun, WANG Tongmin. Optimization of Thermoelectric Performance of CaTiO3-Based Materials by Dy/Nb Co-Doping[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 742
Special Issue:
Received: Oct. 7, 2024
Accepted: May. 29, 2025
Published Online: May. 29, 2025
The Author Email: KANG Huijun (kanghuijun@dlut.edu.cn)