Journal of the Chinese Ceramic Society, Volume. 51, Issue 4, 842(2023)
A Dual-band Sample Adaptive Dielectric Sensor for Ceramics of Versatile Profile and Size in Microwave Range
[1] [1] WU F, GAO M, HE X, et al. Terahertz transmission characteristics of PIN-PMN-PT single crystal[J]. J Chin Ceram Soc, 2018, 46(1): 53-58.
[2] [2] LU Y, YANG Y, DU B. Preparation and dielectric properties at high frequency of AlN-CNT composited ceramic[J]. J Chin Ceram Soc, 2016, 44(3): 375-379.
[3] [3] HIRAO T, HAMADA S. Novel multi-material 3-dimensional low-temperature co-fired ceramic base[J]. IEEE Access, 2019, 7: 12959-12963.
[4] [4] YU J, YI L, WANG T, et al. Preparation and performance of Si3N4/BAS composite ceramics[J]. J Chin Ceram Soc, 2017, 45(3): 378-383.
[5] [5] KASASHIMA Y, IKEDA T, TABARU T. Decrease in particles by substituting conductive magnesium-oxide based ceramics for conventional electrode materials used in process chamber of plasma etching[J]. IEEE Trans Semicond Manuf, 2021, 34(2): 224-226.
[6] [6] LI D, JIANG J, LIU W, et al. A new mechanism for the vibration control of large flexible space structures with embedded smart devices[J]. IEEE ASME Trans Mechatron, 2015, 20(4): 1653-1659.
[7] [7] WANG C, ALI L, MENG F-Y, et al. High-accuracy complex permittivity characterization of solid materials using parallel interdigital capacitor- based planar microwave sensor[J]. IEEE Sens J, 2021, 21(5): 6083-6093.
[8] [8] PAKKATHILLAM J K, SIVAPRAKASAM B T, POOJALI J, et al. Tailoring antenna focal plane characteristics for a compact free-space microwave complex dielectric permittivity measurement setup[J]. IEEE Trans Instrum Meas, 2021, 70: 6000412.
[9] [9] ZHANG Y, ZHANG J, ZHO U Y, et al. Correction of complex permittivity inversion in free-space gaussian beam reflection model[J]. IEEE Trans Antennas Propag, 2021, 69(10): 6712-6722.
[10] [10] BAO X, LIU S, OCKET I, et al. A general line-line method for dielectric material characterization using conductors with the same cross-sectional geometry[J]. IEEE Microw Wirel Compon Lett, 2018, 28(4): 356-358.
[11] [11] MUOZ-ENANO J, VLEZ P, GIL BARBA M, et al. An analytical method to implement high-sensitivity transmission line differential sensors for dielectric constant measurements[J]. IEEE Sens J, 2020, 20(1): 178-184.
[12] [12] SHWAYKANI H, EL-HAJJ A, COSTANTINE J, et al. A calibration-free method for the dielectric constant calculation of low-loss materials[J]. IEEE Trans Instrum Meas, 2021, 70: 1-10.
[13] [13] LI L, HU H, TANG P, et al. Compact dielectric constant characterization of low-loss thin dielectric slabs with microwave reflection measurement[J]. IEEE Antennas Wirel Propag Lett, 2018, 17(4): 575-578.
[14] [14] GUTIRREZ-CANO J D, PLAZA-GONZLEZ P, CANS A J, et al. A new stand-alone microwave instrument for measuring the complex permittivity of materials at microwave frequencies[J]. IEEE Trans Instrum Meas, 2020, 69(6): 3595-3605.
[15] [15] KATO Y, HORIBE M. New permittivity measurement methods using resonant phenomena for high-permittivity materials[J]. IEEE Trans Instrum Meas, 2017, 66(6): 1191-1200.
[16] [16] HUO S, WANG D, WANG Y, et al. Preparation process of tungsten carbide porous ceramic by gel-casting[J]. J Chin Ceram Soc, 2016, 44(12): 1681-1685.
[17] [17] LIU Q, ZHAO Y, GE L, et al. Fabrication and ion diffusion behavior of planar waveguide YAG/Yb:YAG/YAG transparent ceramics[J]. J Chin Ceram Soc, 2017, 45(6): 749-755.
[18] [18] LI X, SNETKOV I L, YAKOVLEV A, et al. Fabrication and performance evaluation of novel transparent ceramics RE:Tb3Ga5O12 (RE=Pr, Tm, Dy) toward magneto-optical application[J]. J Adv Ceram, 2021, 10(2): 271-278.
[19] [19] WANG H, LIU P, WEI J, et al. Preparation and microwave dielectric properties of (Mg1-xYx)2Al4Si5O18 ceramics with low dielectric constants[J]. J Chin Ceram Soc, 2015, 43(9): 1203-1208.
[20] [20] PENG H, REN H, DANG M, et al. Novel high dielectric constant and low loss PTFE/CNT composites[J]. Ceram Int, 2018, 44(14): 16556-16560.
[21] [21] HASSANIN H, ESSA K, ELSHAER A, et al. Micro-fabrication of ceramics: Additive manufacturing and conventional technologies[J]. J Adv Ceram, 2021, 10(1): 1-27.
[22] [22] YU J, GUAN J, GUO W, et al. Microstructure and mechanical properties of Si3N4 ceramic with high SiO2 content[J]. J Chin Ceram Soc, 2016, 44: 1713-1717.
[23] [23] EBRAHIMI A, COROMINA J, MUOZ-ENANO J, et al. Highly sensitive phase-variation dielectric constant sensor based on a capacitively-loaded slow-wave transmission line[J]. IEEE Trans Circuits Syst I Regul Pap, 2021, 68(7): 2787-2799.
[24] [24] CHIO C-H, TENG C, TAM K-W, et al. Differential permittivity sensor using microstrip terminated cross-shaped resonator structure for material characterization[J]. IEEE Access, 2019, 7: 101960-101968.
[25] [25] AQUINO A, JUAN C G, POTELON B, et al. Dielectric permittivity sensor based on planar open-loop resonator[J]. IEEE Sens Lett, 2021, 5(3): 1-4.
[26] [26] ALOTAIBI S A, CUI Y, TENTZERIS M M. CSRR based sensors for relative permittivity measurement with improved and uniform sensitivity throughout [0.9-10.9] GHz band[J]. IEEE Sens J, 2020, 20(9): 4667-4678.
[27] [27] EBRAHIMI A, WITHAYACHUMNANKUL W, AL-SARAWI S F, et al. Dual-mode behavior of the complementary electric-LC resonators loaded on transmission line: Analysis and applications[J]. J Appl Phys, 2014, 116(8): 083705.
[28] [28] KIM E S, KIM S H, LEE B I. Low-temperature sintering and microwave dielectric properties of CaWO4 ceramics for LTCC applications[J]. J Eur Ceram Soc, 2006, 26(10): 2101-2104.
[29] [29] YOON S O, SHIM S H, KIM K S, et al. Low-temperature preparation and microwave dielectric properties of ZBS glass-Al2O3 composites[J]. Ceram Int, 2009, 35(3): 1271-1275.
[30] [30] WANG C, LIU X, GAN L, et al. A dual-band non-destructive dielectric measurement sensor based on complementary split-ring resonator[J]. Front Physics, 2021, Doi: 10.3389/fphy.2021.669707.
[31] [31] MAGEE L. R2 measures based on wald and likelihood ratio joint significance tests[J]. Am Stat, 1990, 44(3): 250-253.
[32] [32] ZHANG Y, JIA C. High-performance cyanate ester composites with plasma-synthesized MgSiO3-SiO2-hBN powders for thermally conductive and dielectric properties[J]. Ceram Int, 2019, 45(5): 6491-6498.
[33] [33] JEONG B J, JOUNG M R, KWEON S H, et al. Effect of Bi2O3 doping on the sintering temperature and microwave dielectric properties of LiAlSiO4 ceramics[J]. J Am Ceram Soc, 2012, 95(6): 1811-1813.
Get Citation
Copy Citation Text
WANG Chen, Liu Xiaoming, LIU Zhifu, ZHANG Dan. A Dual-band Sample Adaptive Dielectric Sensor for Ceramics of Versatile Profile and Size in Microwave Range[J]. Journal of the Chinese Ceramic Society, 2023, 51(4): 842
Special Issue:
Received: Jun. 4, 2022
Accepted: --
Published Online: Apr. 15, 2023
The Author Email:
CSTR:32186.14.