Journal of Synthetic Crystals, Volume. 51, Issue 3, 551(2022)

Research Progress of Low Lead/Lead-Free Perovskite Solar Cells

YANG Zhisheng1、*, KE Weifang2, JIAO Xuewei1, YU Zenan1, and ZHU Hua3
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(41)

    [1] [1] SAPAROV B, MITZI D B. Organic-inorganic perovskites: structural versatility for functional materials design[J]. Chemical Reviews, 2016, 116(7): 4558-4596.

    [2] [2] FENG J, XIAO B. Crystal structures, optical properties, and effective mass tensors of CH3NH3PbX3(X=I and Br) phases predicted from HSE06[J]. The Journal of Physical Chemistry Letters, 2014, 5(7): 1278-1282.

    [3] [3] LI C, LU X G, DING W Z, et al. Formability of ABX3(X=F, Cl, Br, I) halide perovskites[J]. Acta Crystallographica Section B, Structural Science, 2008, 64(Pt 6): 702-707.

    [4] [4] SHOCKLEY W, QUEISSER H J. Detailed balance limit of efficiency of p-n junction solar cells[J]. Journal of Applied Physics, 1961, 32(3): 510-519.

    [5] [5] NOEL N K, STRANKS S D, ABATE A, et al. Lead-free organic-inorganic tin halide perovskites for photovoltaic applications[J]. Energy Environ Sci, 2014, 7(9): 3061-3068.

    [6] [6] STOUMPOS C C, MALLIAKAS C D, KANATZIDIS M G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties[J]. Inorganic Chemistry, 2013, 52(15): 9019-9038.

    [7] [7] LI B, DI H X, CHANG B H, et al. Efficient passivation strategy on Sn related defects for high performance all-inorganic CsSnI3 perovskite solar cells[J]. Advanced Functional Materials, 2021, 31(11): 2007447.

    [8] [8] HAO F, STOUMPOS C C, CAO D H, et al. Lead-free solid-state organic-inorganic halide perovskite solar cells[J]. Nature Photonics, 2014, 8(6): 489-494.

    [9] [9] BERNAL C, YANG K S. First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3[J]. The Journal of Physical Chemistry C, 2014, 118(42): 24383-24388.

    [10] [10] HAO F, STOUMPOS C C, GUO P J, et al. Solvent-mediated crystallization of CH3NH3SnI3 films for heterojunction depleted perovskite solar cells[J]. Journal of the American Chemical Society, 2015, 137(35): 11445-11452.

    [11] [11] YOKOYAMA T, CAO D H, STOUMPOS C C, et al. Overcoming short-circuit in lead-free CH3NH3SnI3 perovskite solar cells via kinetically controlled gas-solid reaction film fabrication process[J]. The Journal of Physical Chemistry Letters, 2016, 7(5): 776-782.

    [12] [12] SONG T B, YOKOYAMA T, STOUMPOS C C, et al. Importance of reducing vapor atmosphere in the fabrication of tin-based perovskite solar cells[J]. Journal of the American Chemical Society, 2017, 139(2): 836-842.

    [13] [13] HOSHI H, SHIGEEDA N, DAI T. Improved oxidation stability of tin iodide cubic perovskite treated by 5-ammonium valeric acid iodide[J]. Materials Letters, 2016, 183: 391-393.

    [14] [14] KOH T M, KRISHNAMOORTHY T, YANTARA N, et al. Formamidinium tin-based perovskite with low Eg for photovoltaic applications[J]. Journal of Materials Chemistry A, 2015, 3(29): 14996-15000.

    [15] [15] LEE S J, SHIN S S, KIM Y C, et al. Fabrication of efficient formamidinium tin iodide perovskite solar cells through SnF2-pyrazine complex[J]. Journal of the American Chemical Society, 2016, 138(12): 3974-3977.

    [16] [16] CUI D Y, LIU X, WU T H, et al. Making room for growing oriented FASnI3 with large grains via cold precursor solution[J]. Advanced Functional Materials, 2021, 31(25): 2100931.

    [17] [17] WANG C B, ZHANG Y T, GU F D, et al. Illumination durability and high-efficiency Sn-based perovskite solar cell under coordinated control of phenylhydrazine and halogen ions[J]. Matter, 2021, 4(2): 709-721.

    [18] [18] MARSHALL K P, WALTON R I, HATTON R A. Tin perovskite/fullerene planar layer photovoltaics: improving the efficiency and stability of lead-free devices[J]. Journal of Materials Chemistry A, 2015, 3(21): 11631-11640.

    [19] [19] YE T, WANG X Z, WANG K, et al. Localized electron density engineering for stabilized B-γ CsSnI3-based perovskite solar cells with efficiencies >10%[J]. ACS Energy Letters, 2021: 1480-1489.

    [20] [20] YE T, WANG K, HOU Y C, et al. Ambient-air-stable lead-free CsSnI3 solar cells with greater than 7.5% efficiency[J]. Journal of the American Chemical Society, 2021, 143(11): 4319-4328.

    [21] [21] LEE B, STOUMPOS C C, ZHOU N J, et al. Air-stable molecular semiconducting iodosalts for solar cell applications: Cs2SnI6 as a hole conductor[J]. Journal of the American Chemical Society, 2014, 136(43): 15379-15385.

    [22] [22] QIU X F, JIANG Y N, ZHANG H L, et al. Lead-free mesoscopic Cs2SnI6 perovskite solar cells using different nanostructured ZnO nanorods as electron transport layers[J]. Physica Status Solidi (RRL)-Rapid Research Letters, 2016, 10(8): 587-591.

    [23] [23] ZHANG Z F, LIANG J H, ZHENG Y T, et al. Balancing crystallization rate in a mixed Sn-Pb perovskite film for efficient and stable perovskite solar cells of more than 20% efficiency[J]. Journal of Materials Chemistry A, 2021, 9(33): 17830-17840.

    [24] [24] KAPIL G, BESSHO T, MAEKAWA T, et al. Tin-lead perovskite fabricated via ethylenediamine interlayer guides to the solar cell efficiency of 21.74%[J]. Advanced Energy Materials, 2021, 11(25): 2101069.

    [25] [25] OGOMI Y, MORITA A, TSUKAMOTO S, et al. CH3NH3SnxPb1-xI3 perovskite solar cells covering up to 1 060 nm[J]. The Journal of Physical Chemistry Letters, 2014, 5(6): 1004-1011.

    [26] [26] ZHANG W X, LI X D, FU S, et al. Lead-lean and MA-free perovskite solar cells with an efficiency over 20%[J]. Joule, 2021, 5(11): 2904-2914.

    [27] [27] PRASANNA R, LEIJTENS T, DUNFIELD S P, et al. Design of low bandgap tin-lead halide perovskite solar cells to achieve thermal, atmospheric and operational stability[J]. Nature Energy, 2019, 4(11): 939-947.

    [28] [28] STOUMPOS C C, FRAZER L, CLARK D J, et al. Hybrid germanium iodide perovskite semiconductors: active lone pairs, structural distortions, direct and indirect energy gaps, and strong nonlinear optical properties[J]. Journal of the American Chemical Society, 2015, 137(21): 6804-6819.

    [29] [29] KRISHNAMOORTHY T, DING H, YAN C, et al. Lead-free germanium iodide perovskite materials for photovoltaic applications[J]. Journal of Materials Chemistry A, 2015, 3(47): 23829-23832.

    [30] [30] SUN P P, LI Q S, YANG L N, et al. Theoretical insights into a potential lead-free hybrid perovskite: substituting Pb2+ with Ge2+[J]. Nanoscale, 2016, 8(3): 1503-1512.

    [31] [31] JACOBSSON T J, PAZOKI M, HAGFELDT A, et al. Goldschmidt’s rules and strontium replacement in lead halogen perovskite solar cells: theory and preliminary experiments on CH3NH3SrI3[J]. The Journal of Physical Chemistry C, 2015, 119(46): 25673-25683.

    [32] [32] BAI X G, SHI Y T, WANG K, et al. Synthesis of CH3NH3SrxPb(1-x)I3 with less Pb content and its application in all-solid thin film solar cells[J]. Acta Physico-Chimica Sinica, 2015, 31(2): 285-290.

    [33] [33] URIBE J I, RAMIREZ D, OSORIO-GUILLN J M, et al. CH3NH3CaI3 perovskite: synthesis, characterization, and first-principles studies[J]. The Journal of Physical Chemistry C, 2016, 120(30): 16393-16398.

    [34] [34] PARK B W, PHILIPPE B, ZHANG X L, et al. Bismuth based hybrid perovskites A3Bi2I9 (A: methylammonium or cesium) for solar cell application[J]. Advanced Materials (Deerfield Beach, Fla), 2015, 27(43): 6806-6813.

    [35] [35] BAI F, HU Y H, HU Y Q, et al. Lead-free, air-stable ultrathin Cs3Bi2I9 perovskite nanosheets for solar cells[J]. Solar Energy Materials and Solar Cells, 2018, 184: 15-21.

    [36] [36] SON D Y, LEE J W, CHOI Y J, et al. Self-formed grain boundary healing layer for highly efficient CH3NH3PbI3 perovskite solar cells[J]. Nature Energy, 2016, 1: 16081.

    [37] [37] ZHANG X Y, ZHU T T, JI C M, et al. In situ epitaxial growth of centimeter-sized lead-free (BA)2CsAgBiBr7/Cs2AgBiBr6 heterocrystals for self-driven X-ray detection[J]. Journal of the American Chemical Society, 2021, 143(49): 20802-20810.

    [38] [38] WANG Z K, LI M, YANG Y G, et al. Perovskite solar cells: high efficiency Pb-in binary metal perovskite solar cells[J]. Advanced Materials, 2016, 28(31): 6767.

    [39] [39] CUI X P, JIANG K J, HUANG J H, et al. Cupric bromide hybrid perovskite heterojunction solar cells[J]. Synthetic Metals, 2015, 209: 247-250.

    [40] [40] CORTECCHIA D, DEWI H A, YIN J, et al. Lead-free MA2CuClxBr4-x hybrid perovskites[J]. Inorganic Chemistry, 2016, 55(3): 1044-1052.

    [42] [42] CAI X, ZHANG Y M, SHI Z J, et al. Discovery of lead-free perovskites for high-performance solar cells via machine learning: ultrabroadband absorption, low radiative combination, and enhanced thermal conductivities[J]. Advanced Science, 2021: 2103648.

    Tools

    Get Citation

    Copy Citation Text

    YANG Zhisheng, KE Weifang, JIAO Xuewei, YU Zenan, ZHU Hua. Research Progress of Low Lead/Lead-Free Perovskite Solar Cells[J]. Journal of Synthetic Crystals, 2022, 51(3): 551

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 12, 2021

    Accepted: --

    Published Online: Apr. 21, 2022

    The Author Email: Zhisheng YANG (85694626@qq.com)

    DOI:

    CSTR:32186.14.

    Topics