Chinese Journal of Lasers, Volume. 51, Issue 8, 0810001(2024)

Point Clouds Classification and Segmentation for Nursery Trees Based on Improved PointNet++ Model

Jie Xu, Hui Liu*, Yue Shen, Guanxue Yang, Hao Zhou, and Siyuan Wang
Author Affiliations
  • School of Electrical and Information Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu , China
  • show less
    Figures & Tables(16)
    Schematic diagram of feature fusion strategy
    Acquisition of relative coordinates of neighboring points for each local area
    Model combining coordinate attention mechanism and attentive pooling
    Classification branch of improved model
    Segmentation branch of improved model
    Nursery for data collection. (a) Whole scene of nursery; (b) part of scene of nursery
    Livox Horizon laser sensor and acquired point clouds. (a) Livox Horizon laser sensor; (b) acquired point clouds
    Seven common kinds of landscape trees. (a) Osmanthus fragrans; (b) Malus halliana; (c) cherry plum; (d) Acer palmatum; (e) Chimonanthus praecox; (f) loquat tree; (g) Chinese holly
    Schematic diagram of segmented point clouds of seven tree species. (a) Osmanthus fragrans; (b) Malus halliana; (c) cherry plum; (d) Acer palmatum; (e) Chimonanthus praecox; (f) loquat tree; (g) Chinese holly
    Confusion matrixes. (a) PointNet; (b) PointNet++; (c) ours
    Examples of visualization of segmentation results using PointNet, PointNet++, and proposed model (white boxes denote wrong predicted points). (a) Ground truth; (b) segmentation results of PointNet; (c) segmentation results of PointNet++; (d) segmentation results of proposed model
    • Table 1. Laser parameters

      View table

      Table 1. Laser parameters

      ParameterValue
      Detection range /m260
      Range error /cm2
      Angle error /(°)0.05
      Field-of-view (FOV) /(°)81.7×25.1
      Data rate /(point·s-1240000
    • Table 2. Numbers of samples, point cloud groups, and groups in training and testing sets for different types of trees

      View table

      Table 2. Numbers of samples, point cloud groups, and groups in training and testing sets for different types of trees

      CategoryNumber of treesNumber of point cloud groupsNumber of point cloud groups in training setNumber of point cloud groups in testing set
      Osmanthus fragrans12017912653
      Malus halliana14428320182
      Cherry plum16428720186
      Acer palmatum15129020387
      Chimonanthus praecox15829020387
      Loquat tree14621515164
      Chinese holly16328419985
    • Table 3. Software and hardware parameters for experiment

      View table

      Table 3. Software and hardware parameters for experiment

      ParameterContent
      CPUIntel(R) Xeon(R) Gold 6226R
      GPUNVIDIA RTX3090
      CudaCuda11.7
      Data processing toolsPython3.8, PyCharm2020
      Deep learning frameworkPytorch
    • Table 4. Testing results of classification on self-made dataset

      View table

      Table 4. Testing results of classification on self-made dataset

      ModelOAmAcc
      PointNet81.2580.00
      PointNet++89.7189.44
      Ours (SE)90.3392.39
      Ours (CBAM)90.8392.28
      Ours (CA)91.3393.13
      Ours92.5094.22
    • Table 5. Testing results of segmentation on self-made dataset

      View table

      Table 5. Testing results of segmentation on self-made dataset

      ModelmIoUPrecisionRecallF1 score
      PointNet76.9570.7176.0173.01
      PointNet++83.8585.3592.4088.47
      Ours (SE)87.0889.3294.8691.45
      Ours (CBAM)87.6188.5694.2991.17
      Ours (CA)89.8988.2994.5191.12
      Ours89.0990.0995.4492.59
    Tools

    Get Citation

    Copy Citation Text

    Jie Xu, Hui Liu, Yue Shen, Guanxue Yang, Hao Zhou, Siyuan Wang. Point Clouds Classification and Segmentation for Nursery Trees Based on Improved PointNet++ Model[J]. Chinese Journal of Lasers, 2024, 51(8): 0810001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: remote sensing and sensor

    Received: Jul. 4, 2023

    Accepted: Sep. 5, 2023

    Published Online: Mar. 29, 2024

    The Author Email: Liu Hui (amity@ujs.edu.cn)

    DOI:10.3788/CJL230989

    CSTR:32183.14.CJL230989

    Topics