High Power Laser and Particle Beams, Volume. 34, Issue 3, 031023(2022)

Lightweight neural network hand gesture recognition method for embedded platforms

Chenyi Yang, Yuqing He*, Junyuan Zhao, and Guorong Li
Author Affiliations
  • Key Laboratory of Photoelectronic Imaging Technology and System of Ministry of Education, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China
  • show less
    Figures & Tables(16)
    Construction and pipeline of the algorithm
    Depthwise separable convolution
    Squeeze-and-excitation module[22]
    Hand gesture recognition network based on MobileNetv3-SSDLite
    Neural network structure before and after the embedded optimization
    The chosen hand gestures
    Selecting images for hand gesture dataset
    Network loss in training process
    NVIDIA Jetson TX2 embedded processor developer kit
    Part of the hand gesture recognition results
    • Table 1. MobileNet series comparison to VGG16

      View table
      View in Article

      Table 1. MobileNet series comparison to VGG16

      network structureparams/MbyteMACs/106ImageNet accuracy/%
      VGG1613.81530071.5
      MobieNetv14.256970.6
      MobileNetv23.430072.0
      MobileNetv35.421975.2
    • Table 2. Extra feature map layers for object detection

      View table
      View in Article

      Table 2. Extra feature map layers for object detection

      extra layersshape
      layer 1$39 \times 39 \times 512$
      layer 2$19 \times 19 \times 1024$
      layer 3$10 \times 10 \times 512$
      layer 4$5 \times 5 \times 256$
      layer 5$3 \times 3 \times 256$
      layer 6$1 \times 1 \times 256$
    • Table 3. SSDLite detection head comparison to SSD

      View table
      View in Article

      Table 3. SSDLite detection head comparison to SSD

      network structureparams/MbyteMACs/106mAP/%
      SSD14.8125019.3
      SSDLite2.135022.2
    • Table 4. Recognition results of hand gestures

      View table
      View in Article

      Table 4. Recognition results of hand gestures

      hand gestureaccuracy/%
      099.64
      1100.00
      399.51
      499.22
      599.69
      average99.61
    • Table 5. Recognition results of hand gestureson various scenarios

      View table
      View in Article

      Table 5. Recognition results of hand gestureson various scenarios

      scenariosaverage accuracy/%
      multiple hand gestures96
      complicated background64
      low light intensity72
    • Table 6. Comparison of different hand gesture recognition algorithms.

      View table
      View in Article

      Table 6. Comparison of different hand gesture recognition algorithms.

      algorithmparams/MbyteMACs/106frame rate/(frame/s)mean accuracy/%
      VGG16-SSD24.330654291.75
      MobieNetv1-SSD7.212991293.98
      MobileNetv1-SSDLite4.111301693.86
      MobileNetv2-SSDLite3.16563691.01
      MobileNetv3-SSDLite2.25265899.61
    Tools

    Get Citation

    Copy Citation Text

    Chenyi Yang, Yuqing He, Junyuan Zhao, Guorong Li. Lightweight neural network hand gesture recognition method for embedded platforms[J]. High Power Laser and Particle Beams, 2022, 34(3): 031023

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Laser Advanced Interdisciplinary Science

    Received: Jul. 30, 2021

    Accepted: --

    Published Online: Mar. 28, 2022

    The Author Email: Yuqing He (yuqinghe@bit.edu.cn)

    DOI:10.11884/HPLPB202234.210335

    Topics