PhotoniX, Volume. 4, Issue 1, 9(2023)
Intelligent optoelectronic processor for orbital angular momentum spectrum measurement
[2] [2] Yuanjie Y, Yuxuan R, Mingzhou C, Yoshihiko A, Carmelo R-G. Optical trapping with structured light: a review. Adv. Photonics 3 (2021).
[5] [5] Lin Z, Hu J, Chen Y, Brès C-S, Yu S (2022) arXiv:2206.12883
[15] [15] Chen P, et al. Digitalizing self-assembled Chiral Superstructures for Optical Vortex Processing. Adv Mat. 2018;30:1705865.
[23] [23] Joowon L, Ahmed BA, Demetri P. Three-dimensional tomography of red blood cells using deep learning. Adv Photonics. 2020;2:1–9.
[24] [24] Zhenbo R, Zhimin X, Edmund YML. End-to-end deep learning framework for digital holographic reconstruction. Adv Photonics. 2019;1:1–12.
[26] [26] Shijie F, et al. Fringe pattern analysis using deep learning. Adv Photonics. 2019;1:1–7.
[30] [30] Feng F, et al. Deep learning-enabled Orbital Angular Momentum-Based information encryption transmission. ACS Photonics. 2022;9:820-9.
[37] [37] Rafayelyan M, Dong J, Tan Y, Krzakala F, Gigan S. Large-scale Optical Reservoir Computing for Spatiotemporal Chaotic Systems Prediction. Phys Rev X. 2020;10:041037.
[39] [39] Ying Z, et al. Optical neural network quantum state tomography. Adv Photonics. 2022;4:1–7.
[40] [40] Jingxi L, Deniz M, Yi L, Yair R, Aydogan O. Class-specific differential detection in diffractive optical neural networks improves inference accuracy. Adv Photonics. 2019;1:1–13.
[49] [49] Chen H, et al. Diffractive Deep Neural Networks at Visible Wavelengths Engineering. 2021;7:1483–91.
[53] [53] Venkatesh B, Anuradha JA. Review of feature selection and its methods. Cybern Inf Technol. 2019;19:3–26.
[54] [54] Shiyao F, et al. Orbital angular momentum comb generation from azimuthal binary phases. Adv Photonics Nexus. 2022;1:016003.
[55] [55] Lin Z, et al. Single-shot Kramers-Kronig complex orbital angular momentum spectrum retrieval. 2022;ArXiv.2206.12883. Preprint at https://arxiv.org/abs/2206.12883.
[60] [60] Lavery M, Chen Z, Cheng M, Mckee D,Yao A. Sensing with structured beams. 2021;11926. (SPIE).
[64] [64] Yosinski J, Clune J, Nguyen A, Fuchs T, Lipson H Understanding Neural Networks Through Deep Visualization. 2015;ArXiv.1506.06579. Preprint at https://arxiv.org/abs/1506.06579.
[65] [65] Laurens VDM, Hinton GJ. J.o.M.L.R. Visualizing Data using t-SNE. J Mach Learn Res. 2008;9:2579–605.
[66] [66] Zhou B, et al. Learning Deep Features for Discriminative Localization. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. p. 2921–29. .
[71] [71] Chen R, et al Physics-aware Complex-valued Adversarial Machine Learning in Reconfigurable Diffractive All-optical Neural Network. 2022;ArXiv.2203.06055. Preprint at https://arxiv.org/abs/2203.06055.
[76] [76] Chen P, Wei B-Y, Hu W, Lu Y-Q. Liquid-crystal-mediated geometric phase: from Transmissive to Broadband Reflective Planar Optics. Adv Mat. 2020;32:1903665.
[79] [79] Zhuang F, et al. A Comprehensive Survey on Transfer Learning. Proc IEEE. 2021;109:43–76.
[83] [83] Wu C, et al. Harnessing optoelectronic noises in a photonic generative network. Sci Adv. 2022;8:eabm2956.
[84] [84] Hinton G, Vinyals O, Dean J. Distilling the knowledge in a neural network. 2015;ArXiv.1503.02531. Preprint at https://arxiv.org/abs/1503.02531.
[85] [85] Berthelot D, et al MixMatch: A Holistic Approach to Semi-Supervised Learning. 2019;ArXiv.1905.02249. Preprint at https://arxiv.org/abs/1905.02249.
Get Citation
Copy Citation Text
Hao Wang, Ziyu Zhan, Futai Hu, Yuan Meng, Zeqi Liu, Xing Fu, Qiang Liu. Intelligent optoelectronic processor for orbital angular momentum spectrum measurement[J]. PhotoniX, 2023, 4(1): 9
Category: Research Articles
Received: Sep. 22, 2022
Accepted: Nov. 28, 2022
Published Online: Jul. 10, 2023
The Author Email: Xing Fu (fuxing@tsinghua.edu.cn), Qiang Liu (qiangliu@tsinghua.edu.cn)