Chinese Journal of Lasers, Volume. 41, Issue 10, 1005004(2014)
Low Loss Fusion Splicing for Seven-Core Photonic Crystal Fiber by Selected Air Hole Collapse Technique
[1] [1] Philip Russell. Photonic crystal fibers[J]. Science, 2003, 299(5605): 358-362.
[2] [2] Philip Russell. Photonic-crystal fibers[J]. J Lightwave Technol, 2006, 24(12): 4729-4749.
[3] [3] Stéphane Coen, A H L Chau, R Leonhardt, et al.. White-light supercontinuum generation with 60-ps pump pulses in a photonic crystal fiber[J]. Opt Lett, 2001, 26(17): 1356-1358.
[4] [4] J M Dudley, G Genty, S Coen. Supercontinuum generation in photonic crystal fiber[J]. Rev Mod Phys, 2006, 78(4): 1135-1184.
[5] [5] Chen Hongwei, Guo Liang, Jin Aijun, et al.. Investigation of hundred-watt-level supercontinuum generation in photonic crystal fiber[J]. Acta Physica Sinica, 2013, 62(15): 154207.
[6] [6] H W Chen, S P Chen, J Hou. 7 W all-fiber supercontinuum source[J]. Laser Physics, 2011, 21(1): 191-193.
[8] [8] Chen Hongwei, Wei Huifeng, Liu Tong, et al.. Hundred-watt-level supercontinuum generation in seven-core photonic crystal fiber[J]. Acta Physica Sinica, 2014, 63(4): 044205.
[10] [10] X Zhou, Z Chen, H Chen, et al.. Fusion splicing small-core photonic crystal fibers and single-mode fibers by controlled air hole collapse[J]. Opt Commun, 2012, 285(24): 5283-5286.
[11] [11] L Xiao, M S Demokan, W Jin, et al.. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect[J]. J Lightwave Technol, 2007, 25(11): 3563-3574.
[12] [12] Xi Xiaoming, Chen Zilun, Sun Gunlin, et al.. Fusion splicing of small solid core photonic crystal fibers with conventional fibers based on controlled hole collapse[J]. Chinese J Lasers, 2011, 38(1): 0106004.
[13] [13] Hou Jing, Chen Shengping, Chen Zilun, et al.. Recent developments and key technology analysis of high power supercontinuum source[J]. Laser & Optoelectronics Progress, 2013, 50(8): 080010.
[14] [14] Chen Zilun, Hou Jing, Jiang Zongfu. Post-processing techniques of photonic crystal fibers[J]. Laser & Optoelectronics Progress, 2010, 47(2): 020602.
[15] [15] H Chen, H Wei, T Liu, et al.. All-fiber-integrated high-power supercontinuum sources based on multi-core photonic crystal fibers[J]. IEEE J Sel Top Quantum Electron, 2014, 20(5): 0902008.
[16] [16] Fang Xiaohui, Hu Minglie, Li Yanfeng, et al.. Numerical analysis for structure optimization of seven-core photonic crystal fibers[J]. Acta Physica Sinica, 2009, 58(4): 2495-2500.
[17] [17] Huang Lili, Fang Xiaohui, Cui Yuanling, et al.. Numerical analysis of in-phase supermode selection of seven-core photonic crystal fiber by gain distribution[J]. Acta Physica Sinica, 2014, 63(1): 014204.
[20] [20] W J Wadsworth, A Witkowska, S G Leon-Saval, et al.. Hole inflation and tapering of stock photonic crystal fibres[J]. Opt Express, 2005, 13(17): 6541-6549.
[21] [21] J D Love, W M Henry, W J Stewart, et al.. Tapered single-mode fibres and devices. Part I: adiabaticity criteria[J]. IEE Proceedings J, 1991, 138(5): 343-354.
Get Citation
Copy Citation Text
Zhang Chengdong, Zhou Xuanfeng, Chen Zilun, Xu Xiaojun. Low Loss Fusion Splicing for Seven-Core Photonic Crystal Fiber by Selected Air Hole Collapse Technique[J]. Chinese Journal of Lasers, 2014, 41(10): 1005004
Category: Optical communication
Received: Apr. 10, 2014
Accepted: --
Published Online: Aug. 26, 2014
The Author Email: Zhang Chengdong (cdlongtim@gmail.com)