Geological Journal of China Universities, Volume. 31, Issue 3, 312(2025)
Study of Distributed Monitoring and Intelligent Prediction of Seabed Wind Monopile Deflection
[4] [4] Bisoi S and Haldar S. 2014. Dynamic analysis of offshore wind turbine in clay considering soil-monopile-tower interaction[J]. Soil Dyn. Earthq. Eng., 63: 19-35.
[5] [5] Chang C C and Lin C J. 2011. LIBSVM: a library for support vector machines[J]. ACM Trans. Intel. Syst. Technol., 2: 27-27: 27.
[6] [6] Cheng H C, Wu C H, Yang C C, et al. 2011. Wavelength division multiplexing/spectral amplitude coding applications in fiber vibration sensor systems[J]. IEEE Sens J., 11: 2518-26.
[7] [7] Depina I, Hue Le T M, Eiksund G, et al. 2015. Behavior of cyclically loaded monopile foundations for offshore wind turbines in heterogeneous sands[J]. Compute Geotech., 65: 266-77.
[8] [8] Dhiman H S, Deb D and Guerrero J M. 2019. Hybrid machine intelligent SVR variants for wind forecasting and ramp events[J]. Renew Sustain Energy Rev., 108: 369-79.
[9] [9] Fraile D, Mbistrova A, Pineda I, et al. 2018. Wind in Power 2017: Annual Combined Onshore and Offshore Wind Energy Statistics[M]. WindEurope, Brussels.
[10] [10] Gaci S. 2016. A New Ensemble Empirical Mode Decomposition (EEMD) denoising method for seismic signals[J]. Energy Procedia, 97: 84-91.
[11] [11] Gentils T, Wang L and Kolios A. 2017. Integrated structural optimisation of offshore wind turbine support structures based on finite element analysis and genetic algorithm[J]. Appl. Energy, 199: 187-204.
[12] [12] Han H, Shi B, Zhang L, et al. 2021. Deep displacement monitoring and foundation base boundary reconstruction analysis of diaphragm wall based on ultra-weak FBG[J]. Tunn. Undergr. Sp. Technol., 117: 104158.
[13] [13] Han H, Shi B and Zhang L. 2021. Prediction of landslide sharp increase displacement by SVM with considering hysteresis of groundwater change[J]. Eng. Geol., 280: 105876.
[14] [14] Houssein E H, Gad A G, Hussain K, et al. 2021. Major advances in particle swarm optimization: Theory, analysis, and application[J]. Swarm Evol. Comput., 63: 100868.
[15] [15] Huang C L and Dun J F. 2008. A distributed PSO-SVM hybrid system with feature selection and parameter optimization[J]. Appl. Soft Comput. J., 8: 1381-91.
[16] [16] Jiang J, Gan W, Hu Y, et al. 2021. Real-time monitoring method for unauthorized working activities above the subway tunnel based on ultra-weak fiber Bragg grating vibration sensing array[J]. Meas. J. Int. Meas. Confed., 182: 109744.
[17] [17] Kong D, Liu Y, Deng M, et al. 2020. Analysis of influencing factors of lateral soil resistance distribution characteristics around monopile foundation for offshore wind power[J]. Appl. Ocean Res., 97: 102106.
[18] [18] Li L, Zheng M, Liu X, et al. 2022. Numerical analysis of the cyclic loading behavior of monopile and hybrid pile foundation[J]. Comput. Geotech., 144: 104635.
[19] [19] Li J, Zhu D and Li C. 2022. Comparative analysis of BPNN, SVR, LSTM, Random Forest, and LSTM-SVR for conditional simulation of non-Gaussian measured fluctuating wind pressures[J]. Mech. Syst. Signal Process, 178: 109285.
[20] [20] Martinez-Luengo M, Kolios A and Wang L. 2016. Structural health monitoring of offshore wind turbines: A review through the Statistical Pattern Recognition Paradigm[J]. Renew Sustain Energy Rev., 64: 91-105.
[21] [21] Meng A, Chen S, Ou Z, et al. 2022. A hybrid deep learning architecture for wind power prediction based on bi-attention mechanism and crisscross optimization[J]. Energy, 238: 121795.
[22] [22] Mieloszyk M and Ostachowicz W. 2017. An application of Structural Health Monitoring system based on FBG sensors to offshore wind turbine support structure model[J]. Mar. Struct., 51: 65-86.
[23] [23] Page A M, Klinkvort R T, Bayton S, et al. 2021. A procedure for predicting the permanent rotation of monopiles in sand supporting offshore wind turbines[J]. Mar. Struct., 75: 102813.
[24] [24] Puruncajas B, Vidal Y and Tutivn C. 2020. Vibration-response-only structural health monitoring for offshore wind turbine jacket foundations via convolutional neural networks[J]. Sensors (Switzerland), 20: 1-19.
[25] [25] Santhosh M, Venkaiah C and Vinod Kumar D M. 2018. Ensemble empirical mode decomposition based adaptive wavelet neural network method for wind speed prediction[J]. Energy Convers Manag., 168: 482-93.
[26] [26] Shi B, Zhang D, Zhu H, et al. 2021. DFOS Applications to geo-engineering monitoring[J]. Photonic Sensors, 11: 158-86.
[27] [27] Song Y, Xie X, Wang Y, et al. 2021. Energy consumption prediction method based on LSSVM-PSO model for autonomous underwater gliders[J]. Ocean Eng., 230: 108982.
[28] [28] Tong D, Liao C and Chen J. 2019. Wave-monopile-seabed interaction considering nonlinear pile-soil contact[J]. Comput. Geotech., 113: 103076.
[29] [29] Wang D, Tan D and Liu L. 2018. Particle swarm optimization algorithm: an overview[J]. Soft Comput, 22: 387-408.
[30] [30] Wang S, Li B, Li G, et al. 2021. Short-term wind power prediction based on multidimensional data cleaning and feature reconfiguration[J]. Appl. Energy, 292: 116851.
[31] [31] Wang Z, Jiang J, Wang Z, et al. 2020. Bandwidth-enhanced quasi-distributed acoustic sensing with interleaved chirped pulses[J]. IEEE Sens. J., 20: 12739-43.
[32] [32] Wu X, Hu Y, Li Y, et al. 2019. Foundations of offshore wind turbines: A review[J]. Renewable and Sustainable Energy Reviews, 104: 379-393.
[33] [33] Wu Z NEH. 2010. Ensemble empirical mode decomposition: A noise-assited[J]. Biomed Tech., 55: 193-201.
[34] [34] Xu M, Wang S Q, Wang Z S, et al. 2022. Dynamic response analysis of a real-world operating offshore wind turbine under earthquake excitations[J]. Ocean Engineering, 266: 112761.
[35] [35] Xu S H, Li Z W, Deng Y F, et al. 2021. Bearing performance of steel pipe pile in multilayered marine soil using fiber optic technique: A case study[J]. Mar Georesources Geotechnol., 40(11/12): 1453-1469.
[36] [36] Yang M, Bai W, Guo H, et al. 2016. Huge capacity fiber-optic sensing network based on ultra-weak draw tower gratings[J]. Photonic Sensors, 6: 26-41.
[37] [37] Ye X, Zhu H H, Wang J, et al. 2022. Subsurface Multi-Physical Monitoring of a Reservoir Landslide With the Fiber-Optic Nerve System[J]. Geophys. Res. Lett., 49: e2022GL098211.
[38] [38] Ziegler L, Cosack N, Kolios A, et al. 2019. Structural monitoring for lifetime extension of offshore wind monopiles: Verification of strain-based load extrapolation algorithm[J]. Mar. Struct., 66: 154-63.
[39] [39] Zhang X, Liu J, Han Y, et al. 2018. A framework for evaluating the bearing capacity of offshore wind power foundation under complex loadings[J]. Appl. Ocean Res., 80: 66-78.
[40] [40] Zhang Y, Sun H and Guo Y. 2019. Wind power prediction based on pso-svr and grey combination model[J]. IEEE Access, 7: 136254-67.
[41] [41] Zheng X, Shi B, Zhu H H, et al. 2021. Performance monitoring of offshore PHC pipe pile using BOFDA based distributed fiber optic sensing system[J]. Geomech. Eng., 24: 337-48.
[42] [42] Zheng Y, Zhu Z W, Xiao W, et al. 2020. Review of fiber optic sensors in geotechnical health monitoring[J]. Opt. Fiber Technol., 54: 102127.
Get Citation
Copy Citation Text
PAN Wendong, SHI Bin, MENG Zhihao, HAN Heming, WEI Guangqing. Study of Distributed Monitoring and Intelligent Prediction of Seabed Wind Monopile Deflection[J]. Geological Journal of China Universities, 2025, 31(3): 312
Received: Apr. 26, 2024
Accepted: Aug. 21, 2025
Published Online: Aug. 21, 2025
The Author Email: SHI Bin (shibin@nju.edu.cn)