Journal of Inorganic Materials, Volume. 38, Issue 12, 1379(2023)
[1] WANG Y, CHEN E Q, TANG J W et al. Insight on reaction pathways of photocatalytic CO2 conversion[J]. ACS Catalysis(2022).
[3] LI G P, LI Z Z, XIE H F et al. Efficient C2 hydrocarbons and CO2adsorption and separation in a multi-site functionalized MOF[J]. Chinese Journal of Structure Chemistry, 1047(2021).
[7] LIN M X, JIANG W S, ZHANG T S et al. Ordered CoIII- MOF@CoII-MOF heterojunction for highly efficient photocatalytic syngas production[J]. Small Science(2023).
[8] SUMIDA K, ROGOW D L, MASON J A. et al. Carbon dioxide capture in metal organic frameworks[J]. Chemical Reviews(2012).
[10] ZHANG Z J, Yao Z Z, XIANG S C et al. Perspective of microporous metal-organic frameworks for CO2 capture and separation[J]. Energy & Environmental Science, 2868(2014).
[11] ZHAI Q G, BU X H, MAO C Y et al. Systematic and dramatic tuning on gas sorption performance in heterometallic metal-organic frameworks[J]. Journal of the American Chemical Society, 138(2016).
[13] GAO Z Y, LIANG L, ZHANG X et al. Facile one-pot synthesis of Zn/Mg-MOF-74 with unsaturated coordination metal centers for efficient CO2 adsorption and conversion to cyclic carbonates[J]. ACS Applied Materials & Interfaces(2021).
[14] MASOOMI M Y, MORSALI A, DHAKSHINAMOORTHY A et al. Mixed-Metal MOFs: unique opportunities in metal-organic framework functionality and design[J]. Angewandte Chemie International Edition(2019).
[15] GUO S H, QI X J, ZHOU H M et al. A bimetallic-MOF catalyst for efficient CO2 photoreduction from simulated flue gas to value added formate[J]. ACS Applied Materials & Interfaces(2020).
[19] ZHOU Z H, MEI L, MA C et al. A novel bimetallic MIL- 101(Cr,Mg) with high CO2 adsorption capacity and CO2/N2 selectivity[J]. Chemical Engineering Science(2016).
[20] QIN L, LI Y, LIANG F L et al. A microporous 2D cobalt-based MOF with pyridyl sites and open metal sites for selective adsorption of CO2[J]. Microporous & Mesoporous Materials(2022).
[21] YU J G, RANA J R. Facile preparation and enhanced photocatalytic H2-production activity of Cu(OH)2 cluster modified TiO2[J]. Energy & Environmental Science(2011).
[22] ZHAO H, WANG X S, FENG J F et al. Synthesis and characterization of Zn2GeO4/Mg-MOF-74 composites with enhanced photocatalytic activity for CO2 reduction[J]. Catalysis Science & Technology(2018).
[25] LI Z, LIU P, QU C J et al. Porous metal-organic frameworks for carbon dioxide adsorptionand separation at low pressure[J]. ACS Sustainable Chemistry & Engineering(2020).
[26] BAO Z B, YU L Y, REN Q L et al. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. Journal of Colloid & Interface Science, 549(2011).
[27] LI N, CHANG Z, HUANG H et al. Specific K+binding sites as CO2 traps in a porous MOF for enhanced CO2 selective sorption[J]. Small(2019).
[31] CASCO M E., MARTĺNEZ-ESCANDELL M M, SILVESTRE- ALBERO J S et al. Effect of the porous structure in carbon materials for CO2 capture at atmospheric and high-pressure[J]. Carbon(2014).
[32] SUN X J, WANG C P, PAN X Y et al. Application of MOFs-based porous carbon materials in gas adsorption and separation[J]. Chinese Science Bulletin, 3590(2021).
Get Citation
Copy Citation Text
Jie LING, Anning ZHOU, Wenzhen WANG, Xinyu JIA, Mengdan MA.
Category:
Received: May. 10, 2023
Accepted: --
Published Online: Mar. 6, 2024
The Author Email: Anning ZHOU (psu564@139.com), Wenzhen WANG (wzwang@xsyu.edu.cn)