Acta Photonica Sinica, Volume. 54, Issue 5, 0527001(2025)
Investigation of Polariton Condensate Based on Stimulated Scattering at Room Temperature
[1] PENG K, LI W, SUN M et al. Topological valley Hall polariton condensation[J]. Nature Nanotechnology, 19, 1283-1289(2024).
[2] JIN F, MANDAL S, WU J Q et al. Observation of perovskite topological valley exciton-polaritons at room temperature[J]. Nature Communications, 15, 10563(2024).
[3] CHEN Y Z, SHI Y, GAN Y S et al. Unraveling the ultrafast coherent dynamics of exciton polariton propagation at room temperature[J]. Nano Letters, 23, 8704-8711(2023).
[4] WU X, ZHANG S, SONG J et al. Exciton polariton condensation from bound states in the continuum at room temperature[J]. Nature Communications, 15, 3345(2024).
[5] FENG J G, WANG J, FIERAMOSCA A et al. All-optical switching based on interacting exciton polaritons in self-assembled perovskite microwires[J]. Science Advances, 7, eabj6627(2021).
[6] WANG H, ZHOU H, LUO S et al. Controllable topological edge mode in an optically excited exciton-polariton lattice[J]. Physical Review B, 106, L220305(2022).
[7] ZHANG Long, CHEN Zhanghai. Progress on exciton polariton photonics[J]. SCIENTIA SINICA Physica, 51, 030003(2021).
[8] TASSONE F, PIERMAROCCHI C, SAVONA V et al. Bottleneck effects in the relaxation and photoluminescence of microcavity polaritons[J]. Physical Review B, 56, 7554(1997).
[9] IMAMOGLU A, RAM R J, PAU S et al. Nonequilibrium condensates and lasers without inversion: exciton-polariton lasers[J]. Physical Review A, 53, 4250(1996).
[10] SAVVIDIS P G, BAUMBERG J J, STEVENSON R M et al. Angle-resonant stimulated polariton amplifier[J]. Physical Review Letters, 84, 1547(2000).
[11] SENELLART P, BLOCH J, SERMAGE B et al. Microcavity polariton depopulation as evidence for stimulated scattering[J]. Physical Review B, 62, 16263(2000).
[12] DANG L S, HEGER D, ANDRE R et al. Stimulation of polariton photoluminescence in semiconductor microcavity[J]. Physical Review Letters, 81, 3920(1998).
[13] RICHARD M, KASPRZAK J, ANDRE R et al. Experimental evidence for nonequilibrium Bose condensation of exciton polaritons[J]. Physical Review B, 72, 201301(2005).
[14] IMAMOGLU A, RAM R J. Quantum dynamics of exciton lasers[J]. Physics Letter A, 214, 193-198(1996).
[15] KHITROVA G, GIBBS H M, JAHNKE F et al. Nonlinear optics of normal mode-coupling semiconductor microcavities[J]. Reviews of Modern Physics, 71, 1591-1639(1999).
[16] STEVENSON R M, ASTRATOV V N, SKOLNICK M S et al. Continuous wave observation of massive polariton redistribution by stimulated scattering in semiconductor microcavities[J]. Physical Review Letters, 85, 3680-3683(2000).
[17] SUN L, CHEN Z, REN Q et al. Direct observation of whispering gallery mode polaritons and their dispersion in a ZnO tapered microcavity[J]. Physical Review Letters, 100, 156403(2008).
[18] XIE W, DONG H, ZHANG S et al. Room-temperature polariton parametric scattering driven by a one-dimensional polariton condensate[J]. Physical Review Letters, 108, 166401(2012).
[19] LUO S, LIAO L, ZHANG Z et al. Classical spin chains mimicked by room-temperature polariton condensates[J]. Physical Review Applied, 13, 044052(2020).
[20] ZHANG L, XIE W, WANG J et al. Weak lasing in one-dimensional polariton superlattices[J]. Proceedings of the National Academy of Sciences, 112, E1516-E1519(2015).
[21] TIAN C, CHEN L, ZHANG Y et al. Relaxation oscillations of an exciton-polariton condensate driven by parametric scattering[J]. Nano Letters, 22, 3026-3032(2022).
[22] CHEN F, LI H, ZHOU H, alet. Optically controlled femtosecond polariton switch at room temperature[J]. Physical Review Letters, 129, 057402(2022).
[23] LI F. Fabrication and characterization of ZnO-based microcavities working in the strong coupling regime: polariton laser[D]. Université Nice Sophia Antipolis, 99-122(2013).
[24] LI F, OROSZ L, KAMOUN O et al. From excitonic to photonic polariton condensate in a ZnO-based microcavity[J]. Physical Review Letters, 110, 196406(2013).
[25] NOBIS T, KAIDSHEV M E, RAHM A et al. Whispering gallery modes in nanosized dielectric resonators with hexagonal cross section[J]. Physical Review Letters, 93, 103903(2004).
[26] ARMITAGE A, SKOLNIKC S M, KAVOKIN V A et al. Polariton-induced optical asymmetry in semiconductor microcavities[J]. Physical Review B, 58, 15367-15370(1998).
[27] MARCHETTI F M, SZYMANSKA M H, KEELING J M J et al. Phase diagram for condensation of microcavity polaritons: from theory to practice[J]. Physical Review B, 77, 235313(2008).
[28] TRICHET A, SUN L, PAVLOVIC G et al. One-dimensional ZnO exciton polaritons with negligible thermal broadening at room temperature[J]. Physical Review B, 83, 041302(2011).
[29] WOUTERS M, CARUSOTTO I. Excitations in a nonequilibrium Bose-Einstein condensate of exciton polaritons[J]. Physical Review Letters, 99, 140402(2007).
[30] PORRAS D, CIUTI C, BAUMBERG J J et al. Polariton dynamics and Bose-Einstein condensation in semiconductor microcavities[J]. Physical Review B, 66, 085304(2002).
[31] WOUTERS M, LIEW T C H, SAVONA V. Energy relaxation in one-dimensional polariton condensates[J]. Physical Review B, 82, 245315(2010).
Get Citation
Copy Citation Text
Yanjing LING, Bing XIE, Shuang ZHANG, Liping SUN, Meng ZENG. Investigation of Polariton Condensate Based on Stimulated Scattering at Room Temperature[J]. Acta Photonica Sinica, 2025, 54(5): 0527001
Category:
Received: Nov. 14, 2024
Accepted: Feb. 6, 2025
Published Online: Jun. 18, 2025
The Author Email: Yanjing LING (lingyanjing@bbgu.edu.cn)