Journal of the Chinese Ceramic Society, Volume. 52, Issue 10, 3252(2024)
Iron Silicide/Silicon Nanomaterials Derived from Iron/Acid-Montmorillonite for High Performance Lithium-Ion Battery Anode
[1] [1] YIM C H, NIKETIC S, SALEM N, et al. Towards improving the practical energy density of Li-ion batteries: Optimization and evaluation of silicon: Graphite composites in full cells[J]. J Electrochem Soc, 2016, 164(1): A6294–A6302.
[2] [2] LIU X H, ZHONG L, HUANG S, et al. Size-dependent fracture of silicon nanoparticles during lithiation[J]. ACS Nano, 2012, 6(2):1522–1531.
[3] [3] MCDOWELL M T, LEE S W, NIX W D, et al. 25th anniversary article:Understanding the lithiation of silicon and other alloying anodes for lithium-ion batteries[J]. Adv Mater, 2013, 25(36): 4966–4985.
[4] [4] ZUO X X, ZHU J, MüLLER-BUSCHBAUM P, et al. Silicon based lithium-ion battery anodes: A chronicle perspective review[J]. Nano Energy, 2017, 31: 113–143.
[6] [6] YANG Z X, DU Y, HOU G L, et al. Nanoporous silicon spheres preparation via a controllable magnesiothermic reduction as anode for Li-ion batteries[J]. Electrochim Acta, 2020, 329: 135141.
[7] [7] LIU N, HU L B, MCDOWELL M T, et al. Prelithiated silicon nanowires as an anode for lithium ion batteries[J]. ACS Nano, 2011,5(8): 6487–6493.
[8] [8] CHEN S, CHEN Z, XU X Y, et al. Scalable 2D mesoporous silicon nanosheets for high-performance lithium-ion battery anode[J]. Small,2018, 14(12): e1703361.
[9] [9] AN W L, HE P, CHE Z Z, et al. Scalable synthesis of pore-rich Si/C@C core-shell-structured microspheres for practical long-life lithium-ion battery anodes[J]. ACS Appl Mater Interfaces, 2022, 14(8):10308–10318.
[13] [13] LIU Y Y, SUN M H, YUAN Y F, et al. Accommodation of silicon in an interconnected copper network for robust Li-ion storage[J]. Adv Funct Mater, 2020, 30(14): 1910249.
[14] [14] REN Y B, HE X W, SUI W B, et al. Carbon/binder free 3D Si@Cu2O anode for high performance lithium ion battery[J]. J Mater Res Technol,2020, 9(4): 8081–8091.
[15] [15] LI T, CAO Y L, AI X P, et al. Cycleable graphite/FeSi6 alloy composite as a high capacity anode material for Li-ion batteries[J]. J Power Sources, 2008, 184(2): 473–476.
[16] [16] TAMIRAT A G, LUI Y, DONG X L, et al. Ultrathin silicon nanolayer implanted NixSi/Ni nanoparticles as superlong-cycle lithium-ion anode material[J]. Small Struct, 2021, 2(2): 2000126.
[17] [17] SEO H, YANG H R, YANG Y, et al. Scalable synthesis and electrochemical properties of porous Si-CoSi2-C composites as an anode for Li-ion batteries[J]. Materials (Basel), 2021, 14(18): 5397.
[18] [18] PARK H I, SOHN M, CHOI J H, et al. Microstructural tuning of Si/TiFeSi2 nanocomposite as lithium storage materials by mechanical deformation[J]. Electrochim Acta, 2016, 210: 301–307.
[19] [19] DING B, CAI Z F, AHSAN Z, et al. A review of metal silicides for lithium-ion battery anode application[J]. Acta Metall Sin Engl Lett,2021, 34(3): 291–308.
[20] [20] WANG H, FAN S J, CAO Y L, et al. Building a cycle-stable Fe-Si alloy/carbon nanocomposite anode for Li-ion batteries through a covalent-bonding method[J]. ACS Appl Mater Interfaces, 2020, 12(27):30503–30509.
[21] [21] DOMI Y, USUI H, SHINDO Y, et al. Electrochemical lithiation and delithiation properties of FeSi2/Si composite electrodes in ionic-liquid electrolytes[J]. Electrochemistry, 2020, 88(6): 548–554.
[22] [22] CHEN Y, QIAN J F, CAO Y L, et al. Green synthesis and stable li-storage performance of FeSi(2)/Si@C nanocomposite for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2012, 4(7): 3753–3758.
[23] [23] USUI H, NOUNO K, TAKEMOTO Y, et al. Influence of mechanical grinding on lithium insertion and extraction properties of iron silicide/silicon composites[J]. J Power Sources, 2014, 268: 848–852.
[24] [24] CHOI J A, KIM D W, BAE Y S, et al. Electrochemical and interfacial behavior of a FeSi2.7 thin film electrode in an ionic liquid electrolyte[J].Electrochim Acta, 2011, 56(27): 9818–9823.
[25] [25] ZHU B, JIN Y, TAN Y L, et al. Scalable production of Si nanoparticles directly from low grade sources for lithium-ion battery anode[J]. Nano Lett, 2015, 15(9): 5750–5754.
[26] [26] JO M, SIM S, KIM J, et al. Practical implantation of Si nanoparticles in Carbon-coated α-FeSi2 matrix for Lithium-ion batteries[J].Electrochem Commun, 2022, 140: 107335.
[27] [27] RUTTERT M, SIOZIOS V, WINTER M, et al. Mechanochemical synthesis of Fe–Si-based anode materials for high-energy lithium ion full-cells[J]. ACS Appl Energy Mater, 2020, 3(1): 743–758.
[28] [28] GAO M X, WANG D S, ZHANG X Q, et al. A hybrid Si@FeSiy/SiOx anode structure for high performance lithium-ion batteries via ammonia-assisted one-pot synthesis[J]. J Mater Chem A, 2015, 3(20):10767–10776.
[29] [29] ENTWISTLE J, RENNIE A, PATWARDHAN S. A review of magnesiothermic reduction of silica to porous silicon for lithium-ion battery applications and beyond[J]. J Mater Chem A, 2018, 6(38):18344–18356.
[30] [30] CORDOVA S, SHAFIROVICH E. Combustion synthesis of nanocrystalline silicon from silica and magnesium silicide[J]. Mater Chem Phys, 2020, 254: 123288.
[31] [31] DU J, ZHU R L, CHEN Q Z, et al. In situ synthesis of stable silicon carbide-reinforced silicon nanosheets from organoclay for high-performance lithium-ion battery anodes[J]. Appl Surf Sci, 2023,617: 156566.
[32] [32] ZHOU X Y, REN Y P, YANG J, et al. Si nanoflake-assembled blocks towards high initial coulombic efficiency anodes for lithium-ion batteries[J]. Chem Commun, 2018, 54(86): 12214–12217.
[33] [33] WU L L, YANG J, ZHOU X Y, et al. Enhanced electrochemical performance of heterogeneous Si/MoSi2 anodes prepared by a magnesiothermic reduction[J]. ACS Appl Mater Interfaces, 2016, 8(26):16862–16868.
[34] [34] HE S Y, ZHU R L, CHEN Q Z, et al. Development of a novel hierarchical porous and hydrophobic silica from montmorillonite for benzene adsorption[J]. Sep Purif Technol, 2024, 329: 125031.
[35] [35] REN Y, XIANG L Z, YIN X C, et al. Ultrathin Si nanosheets dispersed in graphene matrix enable stable interface and high rate capability of anode for lithium-ion batteries[J]. Adv Funct Materials, 2022, 32(16):2110046.
[36] [36] WANG H J, TANG W, NI L S, et al. Synthesis of silicon nanosheets from kaolinite as a high-performance anode material for lithium-ion batteries[J]. J Phys Chem Solids, 2020, 137: 109227.
[37] [37] TANG W, GUO X X, LIU X H, et al. Interconnected silicon nanoparticles originated from halloysite nanotubes through the magnesiothermic reduction: A high-performance anode material for lithium-ion batteries[J]. Appl Clay Sci, 2018, 162: 499–506.
[39] [39] BERGAYA F, LAGALY G. Handbook of Clay Science[M]. Newnes,2013.
[40] [40] KLOC C, ARUSHANOV E, WENDL M, et al. Preparation and properties of FeSi, α-FeSi2 and β-FeSi2 single crystals[J]. J Alloys Compd, 1995, 219(1–2): 93–96.
[41] [41] LIN X W, BEHAR M, DESIMONI J, et al. Low-temperature ion-induced epitaxial growth of α-FeSi2 and cubic FeSi2 in Si[J]. Appl Phys Lett, 1993, 63(1): 105–107.
[42] [42] HUBBARD C R, SNYDER R L. RIR-measurement and use in quantitative XRD[J]. Powder Diffr, 1988, 3(2): 74–77.
[43] [43] PATTERSON A L. The scherrer formula for X-ray particle size determination[J]. Phys Rev, 1939, 56(10): 978–982.
[44] [44] HIMPSEL F J, MCFEELY F R, TALEB-IBRAHIMI A, et al. Microscopic structure of the SiO2/Si interface[J]. Phys Rev B Condens Matter, 1988, 38(9): 6084–6096.
[45] [45] CHEN Q Z, ZHU R L, LIU S H, et al. Self-templating synthesis of silicon nanorods from natural sepiolite for high-performance lithium-ion battery anodes[J]. J Mater Chem A, 2018, 6(15): 6356–6362.
[46] [46] TRIPATHI J K, GARBRECHT M, KAPLAN W D, et al. The effect of Fe-coverage on the structure, morphology and magnetic properties of α-FeSi2 nanoislands[J]. Nanotechnology, 2012, 23(49): 495603.
[47] [47] CHENAKIN S P, GALSTYAN G G, TOLSTOGOUZOV A B, et al.XPS and ToF-SIMS characterization of a Finemet surface: Effect of heating[J]. Surf Interface Anal, 2009, 41(3): 231–237.
[48] [48] HE J Y, WANG X, WU X L, et al. Anisotropic etching of microscale β-FeSi2 particles: Formation, mechanism, and quantum confinement of β-FeSi2 nanowhiskers[J]. RSC Adv, 2012, 2(8): 3254–3256.
[49] [49] REN Y P, ZHOU X Y, ZHOU H C, et al. Zn-assisted magnesiothermic reduction for the preparation of ultra-fine silicon nanocrystals for lithium ion batteries[J]. Chem Eng J, 2017, 328: 691–696.
[50] [50] JENSEN W A, LIU N M, ROSKER E, et al. Eutectoid transformations in Fe-Si Alloys for thermoelectric applications[J]. J Alloys Compd, 2017, 721: 705–711.
[51] [51] THOMMES M, KANEKO K, NEIMARK A V, et al. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report)[J]. Pure Appl Chem, 2015,87(9–10): 1051–1069.
[52] [52] CHEN Q Z, LIU S H, ZHU R L, et al. Clay minerals derived nanostructured silicon with various morphology: Controlled synthesis, structural evolution, and enhanced lithium storage properties[J]. J Power Sources, 2018, 405: 61–69.
[53] [53] CHAE S, KO M, PARK S, et al. Micron-sized Fe–Cu–Si ternary composite anodes for high energy Li-ion batteries[J]. Energy Environ Sci, 2016, 9(4): 1251–1257.
[54] [54] JO C, GROOMBRIDGE A S, DE LA VERPILLIERE J, et al. Continuous-flow synthesis of carbon-coated silicon/iron silicide secondary particles for Li-ion batteries[J]. ACS Nano, 2020, 14(1):698–707.
[55] [55] GREEN M, FIELDER E, SCROSATI B, et al. Structured silicon anodes for lithium battery applications[J]. Electrochem Solid-State Lett,2003, 6(5): A75.
[56] [56] SZCZECH J R, JIN S. Nanostructured silicon for high capacity lithium battery anodes[J]. Energy Environ Sci, 2011, 4(1): 56–72.
[57] [57] KANG I, JANG J, YI K W, et al. Porous nanocomposite anodes of silicon/iron silicide/3D carbon network for lithium-ion batteries[J]. J Alloys Compd, 2018, 770: 369–376.
[58] [58] KIM S H, LEE D H, PARK C, et al. Nanocrystalline silicon embedded in an alloy matrix as an anode material for high energy density lithium-ion batteries[J]. J Power Sources, 2018, 395: 328–335.
[59] [59] HE W, TIAN H, ZHANG S, et al. Scalable synthesis of Si/C anode enhanced by FeSix nanoparticles from low-cost ferrosilicon for lithium-ion batteries[J]. J Power Sources, 2017, 353: 270–276.
[60] [60] JIA H P, STOCK C, KLOEPSCH R, et al. Facile synthesis and lithium storage properties of a porous NiSi2/Si/carbon composite anode material for lithium-ion batteries[J]. ACS Appl Mater Interfaces, 2015,7(3): 1508–1515.
[61] [61] GUO J F, PEI S E, HE Z S, et al. Novel porous Si–Cu3Si–Cu microsphere composites with excellent electrochemical lithium storage[J]. Electrochim Acta, 2020, 348: 136334.
Get Citation
Copy Citation Text
DU Jing, LI Xiangjun, XIE Jieyang, WEI Shoushu, XIONG Tao, HE Shiya, CHEN Qingze, ZHU Runliang. Iron Silicide/Silicon Nanomaterials Derived from Iron/Acid-Montmorillonite for High Performance Lithium-Ion Battery Anode[J]. Journal of the Chinese Ceramic Society, 2024, 52(10): 3252
Received: Feb. 12, 2024
Accepted: --
Published Online: Nov. 14, 2024
The Author Email: CHEN Qingze (chenqingze@gig.ac.cn)