Optics and Precision Engineering, Volume. 31, Issue 21, 3221(2023)
Hyperspectral images feature extraction and classification based on fractional differentiation
[1] [1] 刘敬, 李青妍, 刘逸. 基于核加权类对准则的高光谱影像特征提取[J]. 光学 精密工程, 2021, 29(6):1397-1405. doi: 10.37188/OPE.20212906.1397LIUJ, LIQ Y, LIUY. Spectral feature extraction of hyperspectral remote sensing images based on kernel class pair-weighted criterion[J]. Opt. Precision Eng., 2021, 29(6):1397-1405.(in Chinese). doi: 10.37188/OPE.20212906.1397
[2] [2] 邵文静, 孙伟伟, 杨刚. 高光谱遥感影像纹理特征提取的对比分析[J]. 遥感技术与应用, 2021, 36(2): 431-440. doi: 10.11873/j.issn.1004-0323.2021.2.0431SHAOW J, SUNW W, YANGG. Comparison of texture feature extraction methods for hyperspectral imagery classification[J]. Remote Sensing Technology and Application, 2021, 36(2): 431-440.(in Chinese). doi: 10.11873/j.issn.1004-0323.2021.2.0431
[3] [3] 闫敬文, 陈宏达, 刘蕾. 高光谱图像分类的研究进展[J]. 光学 精密工程,2019,27(3): 680-693. doi: 10.3788/ope.20192703.0680YANJ W, CHENH D, LIUL. Overview of hyperspectral image classification[J]. Opt. Precision Eng., 2019, 27(3): 680-693.(in chinese). doi: 10.3788/ope.20192703.0680
[4] [4] 陈静, 张静. 改进高斯过程回归的高光谱空谱联合分类算法[J]. 光学 精密工程, 2019, 27(7):1649-1660. doi: 10.3788/ope.20192707.1649CHENJ, ZHANGJ. Spectral-spatial joint classification of hyperspectral image algorithm based on improved Gaussian process regression[J]. Opt. Precision Eng., 2019, 27(7):1649-1660.(in Chinese). doi: 10.3788/ope.20192707.1649
[5] [5] 方帅, 张坤, 张晶, 等. 增强类可分性的高光谱图像分类[J]. 中国图象图形学报, 2021, 26(8):1940-1951. doi: 10.11834/jig.210029FANGSH, ZHANGK, ZHANGJ, et al. Hyperspectral image classification with enhanced class separability[J]. Journal of Image and Graphics, 2021, 26(8):1940-1951.(in Chinese). doi: 10.11834/jig.210029
[6] LICCIARDI G, MARPU P R, CHANUSSOT J et al. Linear versus nonlinear PCA for the classification of hyperspectral data based on the extended morphological profiles[J]. IEEE Geoscience and Remote Sensing Letters, 9, 447-451(2012).
[7] BANDOS T V, BRUZZONE L, CAMPS-VALLS G. Classification of hyperspectral images with regularized linear discriminant analysis[J]. IEEE Transactions on Geoscience and Remote Sensing, 47, 862-873(2009).
[8] ZHANG M M, LI W, DU Q. Diverse region-based CNN for hyperspectral image classification[J]. IEEE Transactions on Image Processing: a Publication of the IEEE Signal Processing Society, 27, 2623-2634(2018).
[9] LI W, CHEN C, ZHANG M M et al. Data augmentation for hyperspectral image classification with deep CNN[J]. IEEE Geoscience and Remote Sensing Letters, 16, 593-597(2019).
[10] JIA S, DENG B, ZHU J S et al. Local binary pattern-based hyperspectral image classification with superpixel guidance[J]. IEEE Transactions on Geoscience and Remote Sensing, 56, 749-759(2018).
[11] CRUZ-RAMOS C, GARCIA-SALGADO B P, REYES-REYES R et al. Gabor features extraction and land-cover classification of urban hyperspectral images for remote sensing applications[J]. Remote Sensing, 13, 2914(2021).
[12] WEI L F, WANG K, LU Q K et al. Crops fine classification in airborne hyperspectral imagery based on multi-feature fusion and deep learning[J]. Remote Sensing, 13, 2917(2021).
[13] GUO Y L, BI Q S, LI Y et al. Sparse representing denoising of hyperspectral data for water color remote sensing[J]. Applied Sciences, 12, 7501(2022).
[14] [14] 闫汇聪, 刘德山, 陈浪, 等. 散度核协同表示与空谱融合特征的高光谱图像分类算法[J]. 计算机应用与软件, 2023, 40(2): 287-295. doi: 10.3969/j.issn.1000-386x.2023.02.045YANH C, LIUD SH, CHENL, et al. A hyperspectral image classification algorithm based on divergence kernel collaborative representation and spatial-spectral fusion feature[J]. Computer Applications and Software, 2023, 40(2): 287-295.(in Chinese). doi: 10.3969/j.issn.1000-386x.2023.02.045
[15] FAUVEL M, TARABALKA Y, BENEDIKTSSON J A et al. Advances in spectral-spatial classification of hyperspectral images[J]. Proceedings of the IEEE, 101, 652-675(2013).
[16] HU Q B, XU W X, LIU X B et al. Hyperspectral image classification based on bilateral filter with multispatial domain[J]. IEEE Geoscience and Remote Sensing Letters, 19, 1-5(2022).
[17] SUN W W, LIU K, REN G B et al. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images[J]. International Journal of Applied Earth Observation and Geoinformation, 104, 102572(2021).
[18] YUAN Y, MENG X C, SUN W W et al. Multi-resolution collaborative fusion of SAR, multispectral and hyperspectral images for coastal wetlands mapping[J]. Remote Sensing, 14, 3492(2022).
[19] CHEN Y S, LIN Z H, ZHAO X et al. Deep learning-based classification of hyperspectral data[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7, 2094-2107(2014).
[20] CHEN Y S, ZHAO X, JIA X P. Spectral-spatial classification of hyperspectral data based on deep belief network[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8, 2381-2392(2015).
[21] HU W, HUANG Y Y, WEI L et al. Deep convolutional neural networks for hyperspectral image classification[J]. Journal of Sensors, 2015, 1-12(2015).
[22] ALIPOURFARD T, AREFI H, MAHMOUDI S. A novel deep learning framework by combination of subspace-based feature extraction and convolutional neural networks for hyperspectral images classification[C], 4780-4783(27).
[23] CHEN Y S, JIANG H L, LI C Y et al. Deep feature extraction and classification of hyperspectral images based on convolutional neural networks[J]. IEEE Transactions on Geoscience and Remote Sensing, 54, 6232-6251(2016).
[24] LIU K, SUN W W, SHAO Y J et al. Mapping coastal wetlands using transformer in transformer deep network on China ZY1-02D hyperspectral satellite images[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 3891-3903(2022).
[25] ROY S K, KRISHNA G, DUBEY S R et al. HybridSN: exploring 3-D-2-D CNN feature hierarchy for hyperspectral image classification[J]. IEEE Geoscience and Remote Sensing Letters, 17, 277-281(2020).
[26] [26] 蒲亦非, 袁晓, 廖科, 等. 现代信号分析与处理中分数阶微积分的五种数值实现算法[J]. 四川大学学报(工程科学版), 2005, 37(5):118-124. doi: 10.3969/j.issn.1009-3087.2005.05.024PUY F, YUANX, LIAOK, et al. Five numerical algorithms of fractional calculus applied in modern signal analyzing and processing[J]. Journal of Sichuan University (Engineering Science Edition), 2005, 37(5):118-124.(in Chinese). doi: 10.3969/j.issn.1009-3087.2005.05.024
[27] [27] 陈晓冬, 吉佳瑞, 盛婧, 等. 分数阶微分加权引导滤波对超声图像的纹理保持[J]. 光学 精密工程, 2020, 28(1): 174-181. doi: 10.3788/ope.20202801.0174CHENX D, JIJ R, SHENGJ, et al. Fractional differential weighted guided filtering for image texture preservation for medical ultrasound[J]. Opt. Precision Eng., 2020, 28(1): 174-181.(in Chinese). doi: 10.3788/ope.20202801.0174
[28] MATHIEU B, MELCHIOR P, OUSTALOUP A et al. Fractional differentiation for edge detection[J]. Signal Processing, 83, 2421-2432(2003).
[29] [29] 杨柱中, 周激流, 黄梅, 等. 基于分数阶微分的边缘检测[J]. 四川大学学报(工程科学版), 2008, 40(1):152-157.YANGZH ZH, ZHOUJ L, HUANGM, et al. Edge detection based on fractional differential[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(1):152-157.(in Chinese)
Get Citation
Copy Citation Text
Jing LIU, Yang LI, Yi LIU. Hyperspectral images feature extraction and classification based on fractional differentiation[J]. Optics and Precision Engineering, 2023, 31(21): 3221
Category:
Received: May. 8, 2023
Accepted: --
Published Online: Jan. 5, 2024
The Author Email: Jing LIU (zyhalj1975@163.com)