Acta Optica Sinica, Volume. 41, Issue 19, 1901001(2021)

Simulation on Dynamic Turbulence Compensation of Few-Mode Fiber Coupling Demultiplexing System Based on SPGD Algorithm

Jie Jiang1,2、***, Hongxiang Guo1,2、*, Yiming Bian1,2, Yan Li1,2, Jifang Qiu1,2, Xiaobin Hong1,2, Wei Li1,2, Yong Zuo1,2, and Jian Wu1,2、**
Author Affiliations
  • 1School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • 2State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing 100876, China
  • show less
    References(31)

    [1] Kaymak Y, Rojas-Cessa R, Feng J H et al. A survey on acquisition, tracking, and pointing mechanisms for mobile free-space optical communications[J]. IEEE Communications Surveys & Tutorials, 20, 1104-1123(2018).

    [2] Hamza A S, Deogun J S, Alexander D R. Classification framework for free space optical communication links and systems[J]. IEEE Communications Surveys & Tutorials, 21, 1346-1382(2019).

    [3] Alheadary W G, Park K H, Alfaraj N et al. Free-space optical channel characterization and experimental validation in a coastal environment[J]. Optics Express, 26, 6614-6628(2018).

    [4] Liu M W, Li Y C. Propagation of OFDM-OAM optical signal in atmospheric turbulence[J]. Acta Optica Sinica, 39, 0706002(2019).

    [5] Song J X, Chen C Y, Yao H F et al. Study on probability distribution of single-mode-fiber coupling efficiency distorted by turbulence[J]. Laser & Optoelectronics Progress, 58, 1906002(2021).

    [6] Salter P S, Booth M J. Adaptive optics in laser processing[J]. Light, Science & Applications, 8, 110(2019).

    [7] Zhu L, Wang A D, Deng M L et al. High efficient modes diversity receive scheme for free space optical communications under random angular jitter[C], M4A. 283(2020).

    [8] Liu C, Chen M, Chen S Q et al. Adaptive optics for the free-space coherent optical communications[J]. Optics Communications, 361, 21-24(2016).

    [9] Toselli I, Gladysz S. Improving system performance by using adaptive optics and aperture averaging for laser communications in oceanic turbulence[J]. Optics Express, 28, 17347-17361(2020).

    [10] Baykal Y. Adaptive optics corrections of scintillations of Hermite-Gaussian modes in an oceanic medium[J]. Applied Optics, 59, 4826-4832(2020).

    [11] Dong B, Yu J. Hybrid approach used for extended image-based wavefront sensor-less adaptive optics[J]. Chinese Optics Letters, 13, 041101(2015).

    [12] He X, Zhao X H, Cui S Y et al. A rapid hybrid wave front correction algorithm for sensor-less adaptive optics in free space optical communication[J]. Optics Communications, 429, 127-137(2018).

    [13] Ren H X, Dong B, Zhang X F et al. Alignment for active secondary mirror of space telescope using model-based wavefront sensorless adaptive optics[J]. Proceedings of SPIE, 11570, 115700R(2020).

    [14] Huang G, Geng C, Li F et al. Adaptive SMF coupling based on precise-delayed SPGD algorithm and its application in free space optical communication[J]. IEEE Photonics Journal, 10, 1-12(2018).

    [15] Segel M, Anzuola E, Gladysz S et al. Modal vs. zonal wavefront-sensorless adaptive optics for free-space laser communications[C], AOW1B. 3(2016).

    [16] Yang K X, Abulizi M, Li Y H et al. Single-mode fiber coupling with a M-SPGD algorithm for long-range quantum communications[J]. Optics Express, 28, 36600-36610(2020).

    [17] Ke X Z, Zhang Y F, Zhang Y et al. GPU acceleration in wave-front sensorless adaptive wave-front correction system[J]. Laser & Optoelectronics Progress, 56, 070101(2019).

    [18] Chen J K, Hu G J, Han Y Y. Communication experimental system with 3×3 mode division multiplexing based on photonic lantern[J]. Chinese Journal of Lasers, 44, 1106009(2017).

    [19] Zheng D H, Li Y, Chen E H et al. Free-space to few-mode-fiber coupling under atmospheric turbulence[J]. Optics Express, 24, 18739-18744(2016).

    [20] Kumari M, Sharma R, Sheetal A. Performance analysis of l ong-reach 40/40 Gbps mode division multiplexing-based hybrid time and wavelength division multiplexing passive optical network/free-space optics using Gamma-Gamma fading model with pointing error under different weather conditions[J]. Transactions on Emerging Telecommunications Technologies, 32, e4214(2021).

    [21] Arikawa M, Ito T. Performance of mode diversity reception of a polarization-division-multiplexed signal for free-space optical communication under atmospheric turbulence[J]. Optics Express, 26, 28263-28276(2018).

    [22] Wang C, Fan X B, Tong S F et al. Coupling efficiency and influence factors of spatial light into few-mode fiber[J]. Acta Photonica Sinica, 47, 1206001(2018).

    [23] Zheng D H, Li Y, Li B B et al. Free space to few-mode fiber coupling efficiency improvement with adaptive optics under atmospheric turbulence[C], 1-3(2017).

    [25] Lukin V P, Bol’Basova L A, Nosov V V. Comparison of Kolmogorov’s and coherent turbulence[J]. Applied Optics, 53, B231-B236(2014).

    [26] Prasad S. Extended Taylor frozen-flow hypothesis and statistics of optical phase in aero-optics[J]. Journal of the Optical Society of America A, 34, 931-942(2017).

    [27] Zhai H L, Wang B L, Zhang J K et al. Fractal phase screen generation algorithm for atmospheric turbulence[J]. Applied Optics, 54, 4023-4032(2015).

    [28] Li Z H, Li X Y. Performance of predictive correction for adaptive optics systems with frozen flow turbulence[J]. Optics and Precision Engineering, 26, 548-555(2018).

    [29] Liu W, Yao K N, Huang D N et al. Performance evaluation of coherent free space optical communications with a double-stage fast-steering-mirror adaptive optics system depending on the Greenwood frequency[J]. Optics Express, 24, 13288-13302(2016).

    [30] Vali Z, Gholami A, Ghassemlooy Z et al. Modeling turbulence in underwater wireless optical communications based on Monte Carlo simulation[J]. Journal of the Optical Society of America A, 34, 1187-1193(2017).

    [31] Chen M, Liu C, Xian H. Experimental demonstration of single-mode fiber coupling over relatively strong turbulence with adaptive optics[J]. Applied Optics, 54, 8722-8726(2015).

    [32] Cao J T, Zhao X H, Li Z K et al. Stochastic parallel gradient descent laser beam control algorithm for atmospheric compensation in free space optical communication[J]. Optik, 125, 6142-6147(2014).

    Tools

    Get Citation

    Copy Citation Text

    Jie Jiang, Hongxiang Guo, Yiming Bian, Yan Li, Jifang Qiu, Xiaobin Hong, Wei Li, Yong Zuo, Jian Wu. Simulation on Dynamic Turbulence Compensation of Few-Mode Fiber Coupling Demultiplexing System Based on SPGD Algorithm[J]. Acta Optica Sinica, 2021, 41(19): 1901001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Atmospheric Optics and Oceanic Optics

    Received: Mar. 4, 2021

    Accepted: Apr. 19, 2021

    Published Online: Oct. 9, 2021

    The Author Email: Jiang Jie (2453977635@qq.com), Guo Hongxiang (hxguo@bupt.edu.cn), Wu Jian (jianwu@bupt.edu.cn)

    DOI:10.3788/AOS202141.1901001

    Topics