Frontiers of Optoelectronics, Volume. 13, Issue 2, 149(2020)

Fe3O4 nanoparticle-enabled mode-locking in an erbiumdoped fiber laser

Xiaohui LI1、*, Jiajun PENG1, Ruisheng LIU1,2, Jishu LIU1, Tianci FENG1, Abdul Qyyum1, Cunxiao GAO2, Mingyuan XUE2, and Jian ZHANG2
Author Affiliations
  • 1College of Physics and Information Technology, Shaanxi Normal University, Xi’an 710119, China
  • 2State Key Laboratory of Transient Optics and Photonics, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710119, China
  • show less
    References(53)

    [1] [1] Oktem B, ülgüdür C, Ilday F ?. Soliton–similariton fibre laser. Nature Photonics, 2010, 4(5): 307–311

    [2] [2] Kobtsev S, Kukarin S, Smirnov S, Turitsyn S, Latkin A. Generation of double-scale femto/pico-second optical lumps in mode-locked fiber lasers. Optics Express, 2009, 17(23): 20707–20713

    [3] [3] Tang M, Tian X, Shum P, Fu S, Dong H, Gong Y. Four-wave mixing assisted self-stable 4 ′10 GHz actively mode-locked erbium fiber ring laser. Optics Express, 2006, 14(5): 1726–1730

    [4] [4] Liu J S, Li X H, Guo Y X, Qyyum A, Shi Z J, Feng T C, Zhang Y, Jiang C X, Liu X F. SnSe2 nanosheets for subpicosecond harmonic mode-locked pulse generation. Small, 2019, 15(38): 1902811

    [5] [5] Greer E J, Smith K. All-optical FM mode-locking of fibre laser. Electronics Letters, 1992, 28(18): 1741

    [6] [6] Cundiff S, Collings B, Knox W. Polarization locking in an isotropic, modelocked soliton Er/Yb fiber laser. Optics Express, 1997, 1(1): 12–21

    [7] [7] Collings B C, Bergman K, Knox W H. Stable multigigahertz pulsetrain formation in a short-cavity passively harmonic mode-locked erbium/ytterbium fiber laser. Optics Letters, 1998, 23(2): 123–125

    [8] [8] Moenster M, Glas P, Steinmeyer G, Iliew R, Lebedev N, Wedell R, Bretschneider M. Femtosecond Neodymium-doped microstructure fiber laser. Optics Express, 2005, 13(21): 8671–8677

    [9] [9] Wu K, Chen B, Zhang X, Zhang S, Guo C, Li C, Xiao P, Wang J, Zhou L, Zou W, Chen J. High-performance mode-locked and Qswitched fiber lasers based on novel 2D materials of topological insulators, transition metal dichalcogenides and black phosphorus: review and perspective. Optics Communications, 2018, 406: 214– 229

    [10] [10] Yang T, Lin H, Jia B. Two-dimensional material functional devices enabled by direct laser fabrication. Frontiers of Optoelectronics, 2018, 11(1): 2–22

    [11] [11] Choi S, Jeong H, Hong B, Rotermund F, Yeom D. All-fiber dissipative soliton laser with 10.2 nJ pulse energy using an evanescent field interaction with graphene saturable absorber. Laser Physics Letters, 2014, 11(1): 015101

    [12] [12] Liu X, Cui Y, Han D, Yao X, Sun Z. Distributed ultrafast fibre laser. Scientific Reports, 2015, 5(1): 9101

    [13] [13] Haiml M, Grange R, Keller U. Optical characterization of semiconductor saturable absorbers. Applied Physics B, Lasers and Optics, 2004, 79(3): 331–339

    [14] [14] Yamashita S, Inoue Y, Maruyama S, Murakami Y, Yaguchi H, Jablonski M, Set S Y. Saturable absorbers incorporating carbon nanotubes directly synthesized onto substrates and fibers and their application to mode-locked fiber lasers. Optics Letters, 2004, 29 (14): 1581–1583

    [15] [15] Liu H H, Chow K K. Dark pulse generation in fiber lasers incorporating carbon nanotubes. Optics Express, 2014, 22(24): 29708–29713

    [16] [16] Xin W, Liu Z B, Sheng QW, Feng M, Huang L G,Wang P, JiangW S, Xing F, Liu Y G, Tian J G. Flexible graphene saturable absorber on two-layer structure for tunable mode-locked soliton fiber laser. Optics Express, 2014, 22(9): 10239–10247

    [17] [17] Li D D, Zhu J W, Jiang M, Li D, Wu H, Han J, Sun Z P, Ren Z Y. Active-passive Q-switched fiber laser based on graphene microfiber. Applied Physics. B, Lasers and Optics, 2019, 125(11): 203

    [18] [18] Wang Y R, Zhang B T, Yang H, Hou J, Su X C, Sun Z P, He J L. Passively mode-locked solid-state laser with absorption tunable graphene saturable absorber mirror. Journal of Lightwave Technology, 2019, 37(13): 2927–2931

    [19] [19] Chai T, Li X, Feng T, Guo P, Song Y, Chen Y, Zhang H. Few-layer bismuthene for ultrashort pulse generation in a dissipative system based on an evanescent field. Nanoscale, 2018, 10(37): 17617– 17622

    [20] [20] Yan P, Lin R, Ruan S, Liu A, Chen H, Zheng Y, Chen S, Guo C, Hu J. A practical topological insulator saturable absorber for modelocked fiber laser. Scientific Reports, 2015, 5(1): 8690

    [21] [21] Mao D, Jiang B, Gan X, Ma C, Chen Y, Zhao C, Zhang H, Zheng J, Zhao J. Soliton fiber laser mode locked with two types of film-based Bi2Te3 saturable absorbers. Photonics Research, 2015, 3(2): A43 22.

    [22] [22] Zhang Y, Li X, Qyyum A, Feng T, Guo P, Jiang J, Zheng H. PbS nanoparticles for ultrashort pulse generation in optical communication region. Particle & Particle Systems Characterization, 2018, 35 (11): 1800341

    [23] [23] Hui Z, Xu W, Li X, Guo P, Zhang Y, Liu J. Cu2S nanosheets for ultrashort pulse generation in the near-infrared region. Nanoscale, 2019, 11(13): 6045–6051

    [24] [24] Wu M, Li X, Wu K, Wu D, Dai S, Xu T, Nie Q. All-fiber 2 μm thulium-doped mode-locked fiber laser based on MoS2-saturable absorber. Optical Fiber Technology, 2019, 47: 152–157

    [25] [25] Liu W, Pang L, Han H, Bi K, Lei M,Wei Z. Tungsten disulphide for ultrashort pulse generation in all-fiber lasers. Nanoscale, 2017, 9 (18): 5806–5811

    [26] [26] Woodward R I, Howe R C T, Hu G, Torrisi F, Zhang M, Hasan T, Kelleher E J R. Few-layer MoS2-saturable absorbers for short-pulse laser technology: current status and future perspectives. Photonics Research, 2015, 3(2): A30

    [27] [27] Feng J, Li X, Shi Z, Zheng C, Li X, Leng D, Wang Y, Liu J, Zhu L. 2D ductile transition metal chalcogenides (TMCs): novel highperformance Ag2S nanosheets for ultrafast photonics. Advanced Optical Materials, 2019: 1901762

    [28] [28] Kong L, Qin Z, Xie G, Guo Z, Zhang H, Yuan P, Qian L. Black phosphorus as broadband saturable absorber for pulsed lasers from 1 μm to 2.7 μm wavelength. Laser Physics Letters, 2016, 13(4): 045801

    [29] [29] Wei R, Wang M, Zhu Z, Lai W, Yan P, Ruan S, Wang J, Sun Z, Hasan T. High-power femtosecond pulse generation from an allfiber Er-doped chirped pulse amplification system. IEEE Photonics Journal, 2020, 12(2): 3200208

    [30] [30] Zhao C, Zhang H, Qi X, Chen Y, Wang Z, Wen S C, Tang D Y. Ultra-short pulse generation by a topological insulator based saturable absorber. Applied Physics Letters, 2012, 101(21): 211106

    [31] [31] Fang J, Yang Z, long S, Wu Z, Zhao X, Liang F, Jiang Z, Chen Z. High-speed indoor navigation system based on visible light and mobile phone. IEEE Photonics Journal, 2017, 9(2): 8200711

    [32] [32] Mao D, Cui X, Zhang W, Li M, Feng T, Du B, Lu H, Zhao J. Qswitched fiber laser based on saturable absorption of ferroferricoxide nanoparticles. Photonics Research, 2017, 5(1): 52

    [33] [33] Bai X, Mou C, Xu L, Wang S, Pu S, Zeng X. Passively Q-switched erbium-doped fiber laser using Fe3O4-nanoparticle saturable absorber. Applied Physics Express, 2016, 9(4): 042701

    [34] [34] Chan C T. Photonic crystals and topological photonics. Frontiers of Optoelectronics, 2020, 13(1): 2–3

    [35] [35] Li H, Ma B. Research development on fabrication and optical properties of nonlinear photonic crystals. Frontiers of Optoelectronics, 2020, 13(1): 35–49

    [36] [36] Xing G, Jiang J, Ying J Y, Ji W. Fe3O4-Ag nanocomposites for optical limiting: broad temporal response and low threshold. Optics Express, 2010, 18(6): 6183–6190

    [37] [37] Li N, Jia H, Liu J X, Cui L H, Jia Z X, Kang Z, Qin G S, Qin W P. Fe3O4 nanoparticles as the saturable absorber for a mode-locked fiber laser at 1558 nm. Laser Physics Letters, 2019, 16(6): 065102

    [38] [38] Yang J, Hu J, Luo H, Li J, Liu J, Li X, Liu Y. Fe3O4 nanoparticles as a saturable absorber for a tunable Q-switched dysprosium laser around 3 μm. Photonics Research, 2020, 8(1): 70–77

    [39] [39] Liu J S, Li X H, Qyyum A, Guo Y X, Chai T, Xu H, Jiang J. Fe3O4 nanoparticles as a saturable absorber for giant chirped pulse generation. Beilstein Journal of Nanotechnology, 2019, 10: 1065– 1072

    [40] [40] El-Diasty F, El-Sayed H M, El-Hosiny F I, Ismail M I M. Complex susceptibility analysis of magneto-fluids: optical band gap and surface studies on the nanomagnetite-based particles. Current Opinion in Solid State and Materials Science, 2009, 13(1–2): 28–34

    [41] [41] Tang D Y, Zhao L M, Zhao B, Liu A Q. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers. Physical Review A, 2005, 72(4): 043816

    [42] [42] Guo B, Yao Y, Tian J J, Zhao Y F, Liu S, Li M, Quan M R. Observation of bright-dark soliton pair in a fiber laser with topological insulator. IEEE Photonics Technology Letters, 2015, 27(7): 701–704

    [43] [43] Zhang H, Tang D, Zhao L, Wu X. Dual-wavelength domain wall solitons in a fiber ring laser. Optics Express, 2011, 19(4): 3525–3530

    [44] [44] Li X, Liu X, Hu X, Wang L, Lu H, Wang Y, Zhao W. Long-cavity passively mode-locked fiber ring laser with high-energy rectangularshape pulses in anomalous dispersion regime. Optics Letters, 2010, 35(19): 3249–3251

    [45] [45] Chang W, Ankiewicz A, Soto-Crespo J M, Akhmediev N. Dissipative soliton resonances in laser models with parameter management. Journal of Applied Physics, 2008, 25(12): 1972

    [46] [46] Wang X, Xia Q, Gu B A. A 1.9 μm noise-like mode-locked fiber laser based on compact figure-9 resonator. Optics Communications, 2019, 434: 180–183

    [47] [47] Bravo-Huerta E, Durán-Sánchez M, álvarez-Tamayo R I, Santiago- Hernández H, Bello-Jiménez M, Posada-Ramírez B, Ibarra- Escamilla B, Pottiez O, Kuzin E A. Single and dual-wavelength noise-like pulses with different shapes in a double-clad Er/Yb fiber laser. Optics Express, 2019, 27(9): 12349–12359

    [48] [48] Wang S K, Ning Q Y, Luo A P, Lin Z B, Luo Z C, Xu W C. Dissipative soliton resonance in a passively mode-locked figureeight fiber laser. Optics Express, 2013, 21(2): 2402–2407

    [49] [49] Luo Z C, Cao W J, Lin Z B, Cai Z R, Luo A P, Xu W C. Pulse dynamics of dissipative soliton resonance with large duration-tuning range in a fiber ring laser. Optics letters, 2012, 37(22): 4777–4779

    [50] [50] Liu L, Liao J H, Ning Q Y, YuW, Luo A P, Xu S H, Luo Z C, Yang Z M, Xu W C. Wave-breaking-free pulse in an all-fiber normaldispersion Yb-doped fiber laser under dissipative soliton resonance condition. Optics Express, 2013, 21(22): 27087–27092

    [51] [51] Li X, Wang Y, Zhao W, Liu X, Wang Y, Tsang Y H, Zhang W, Hu X, Yang Z, Gao C, Li C, Shen D. All-fiber dissipative solitons evolution in a compact passively Yb-doped mode-locked fiber laser. Journal of Lightwave Technology, 2012, 30(15): 2502–2507

    [52] [52] Jeong Y, Vazquez-Zuniga L A, Lee S, Kwon Y. On the formation of noise-like pulses in fiber ring cavity configurations. Optical Fiber Technology, 2014, 20(6): 575–592

    [53] [53] Li X, Wang Y, Zhang W, Zhao W. Experimental observation of soliton molecules evolution in Yb-doped passively mode locked fiber lasers. Laser Physics Letters, 2014, 11(7): 075103

    CLP Journals

    [1] Jincheng Wei, Peng Li, Linpeng Yu, Shuangchen Ruan, Keyi Li, Peiguang Yan, Jiachen Wang, Jinzhang Wang, Chunyu Guo, Wenjun Liu, Ping Hua, Qitao Lü, "Mode-locked fiber laser of 3.5 µm using a single-walled carbon nanotube saturable absorber mirror," Chin. Opt. Lett. 20, 011404 (2022)

    Tools

    Get Citation

    Copy Citation Text

    Xiaohui LI, Jiajun PENG, Ruisheng LIU, Jishu LIU, Tianci FENG, Abdul Qyyum, Cunxiao GAO, Mingyuan XUE, Jian ZHANG. Fe3O4 nanoparticle-enabled mode-locking in an erbiumdoped fiber laser[J]. Frontiers of Optoelectronics, 2020, 13(2): 149

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: RESEARCH ARTICLE

    Received: Jun. 8, 2020

    Accepted: Jun. 17, 2020

    Published Online: Nov. 25, 2020

    The Author Email: Xiaohui LI (lixiaohui@snnu.edu.cn)

    DOI:10.1007/s12200-020-1057-4

    Topics