Journal of the Chinese Ceramic Society, Volume. 53, Issue 4, 800(2025)

Dielectric Response of (Ba,Sr)TiO3 Thin Films under Tensile Strain

YU Zhanbo1,2, MA Xingyue1,2, WU Zongshuo2, GAO Zhihao1,2, WU Di1,2、*, and YANG Yurong1,2
Author Affiliations
  • 1College of Engineering and Applied Sciences, Department of Materials Science and Engineering, Nanjing University, Nanjing 210093, China
  • 2National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China
  • show less
    References(25)

    [1] [1] SCOTT J F. Applications of modern ferroelectrics[J]. Science, 2007, 315(5814): 954–959.

    [2] [2] PRAMANICKPRAMANICKA@ORNL GOV, PREWITT, FORRESTER & S, et al. Domains, domain walls and defects in perovskite ferroelectric oxides: A review of present understanding and recent contributions[J]. Crit Rev Solid State Mater Sci, 2012, 37(4): 243–275.

    [3] [3] KUMAR A, RABE K M, WAGHMARE U V. Domain formation and dielectric response in PbTiO3: A first-principles free-energy landscape analysis[J]. Phys Rev B, 2013, 87(2): 024107.

    [4] [4] SAYEDAGHAEE S O, PROSANDEEV S, PROKHORENKO S, et al. Domain-wall-induced electromagnons in multiferroics[J]. Phys Rev Materials, 2022, 6(3): 034403.

    [5] [5] MCGILLY L J, YUDIN P, FEIGL L, et al. Controlling domain wall motion in ferroelectric thin films[J]. Nat Nanotechnol, 2015, 10(2): 145–150.

    [6] [6] SHARMA P, ZHANG Q, SANDO D, et al. Nonvolatile ferroelectric domain wall memory[J]. Sci Adv, 2017, 3(6): e1700512.

    [7] [7] NATAF G F, GUENNOU M, GREGG J M, et al. Domain-wall engineering and topological defects in ferroelectric and ferroelastic materials[J]. Nat Rev Phys, 2020, 2: 634–648.

    [8] [8] LIU S, COHEN R E. Origin of stationary domain wall enhanced ferroelectric susceptibility[J]. Phys Rev B, 2017, 95(9): 094102.

    [9] [9] GU Z Q, PANDYA S, SAMANTA A, et al. Resonant domain-wall-enhanced tunable microwave ferroelectrics[J]. Nature, 2018, 560(7720): 622–627.

    [10] [10] GENTNER J O, GERTHSEN P, SCHMIDT N A, et al. Dielectric losses in ferroelectric ceramics produced by domain-wall motion[J]. J Appl Phys, 1978, 49(8): 4485–4489.

    [11] [11] GREGG J M. Exotic domain states in ferroelectrics: Searching for vortices and skyrmions[J]. Ferroelectrics, 2012, 433(1): 74–87.

    [12] [12] KARTHIK J, DAMODARAN A R, MARTIN L W. Effect of 90° domain walls on the low-field permittivity of PbZr0.2Ti0.8O3 thin films[J]. Phys Rev Lett, 2012, 108(16): 167601.

    [13] [13] HUO C H, ZHANG X Y, LI C, et al. Robust tunability and newly emergedQresonance of Ba0.8Sr0.2TiO3-based microwave capacitors under gamma irradiations[J]. ACS Appl Mater Interfaces, 2024, 16(18): 23517–23524.

    [14] [14] MA X, CHEN H, HE R, et al. Active learning of effective Hamiltonian for super-large-scale atomic structures[J]. npj Comput Mater, 2025.

    [15] [15] ZHONG W, VANDERBILT D, RABE K M. First-principles theory of ferroelectric phase transitions for perovskites: The case of BaTiO3[J]. Phys Rev B, 1995, 52(9): 6301–6312.

    [16] [16] WALIZER L, LISENKOV S, BELLAICHE L. Finite-temperature properties of (Ba, Sr)TiO3 systems from atomistic simulations[J]. Phys Rev B, 2006, 73(14): 144105.

    [17] [17] FTHENAKIS Z G, PONOMAREVA I. Dynamics of antiferroelectric phase transition in PbZrO3[J]. Phys Rev B, 2017, 96(18): 184110.

    [18] [18] PONOMAREVA I, BELLAICHE L, OSTAPCHUK T, et al. Terahertz dielectric response of cubic BaTiO3[J]. Phys Rev B, 2008, 77: 012102.

    [19] [19] VANDERBILT D, COHEN M H. Monoclinic and triclinic phases in higher-order Devonshire theory[J]. Phys Rev B, 2001, 63(9): 094108.

    [20] [20] KOUKHAR V G, PERTSEV N A, WASER R. Thermodynamic theory of epitaxial ferroelectric thin films with dense domain structures[J]. Phys Rev B, 2001, 64(21): 214103.

    [21] [21] YUAN S, CHEN Z H, PROKHORENKO S, et al. Hexagonal close-packed polar-skyrmion lattice in ultrathin ferroelectric PbTiO3 films[J]. Phys Rev Lett, 2023, 130(22): 226801.

    [22] [22] HU Y H, YANG J Y, LIU S. Giant piezoelectric effects of topological structures in stretched ferroelectric membranes[J]. Phys Rev Lett, 2024, 133(4): 046802.

    [23] [23] HINUMA Y, HAYASHI H, KUMAGAI Y, et al. Comparison of approximations in density functional theory calculations: Energetics and structure of binary oxides[J]. Phys Rev B, 2017, 96(9): 094102.

    [24] [24] WANG D, BOKOV A A, YE Z G, et al. Subterahertz dielectric relaxation in lead-free Ba(Zr, Ti)O3 relaxor ferroelectrics[J]. Nat Commun, 2016, 7: 11014.

    [25] [25] VIRTANEN P, GOMMERS R, OLIPHANT T E, et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python[J]. Nat Methods, 2020, 17(3): 261–272.

    Tools

    Get Citation

    Copy Citation Text

    YU Zhanbo, MA Xingyue, WU Zongshuo, GAO Zhihao, WU Di, YANG Yurong. Dielectric Response of (Ba,Sr)TiO3 Thin Films under Tensile Strain[J]. Journal of the Chinese Ceramic Society, 2025, 53(4): 800

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 31, 2024

    Accepted: May. 29, 2025

    Published Online: May. 29, 2025

    The Author Email: WU Di (diwu@nju.edu.cn)

    DOI:10.14062/j.issn.0454-5648.20240850

    Topics