Optical Communication Technology, Volume. 49, Issue 3, 34(2025)
Artificial intelligence algorithms applied to fiber amplifier
[1] [1] WEI H, TONG Z, JIAN S. Use of a genetic algorithm to optimize multistage erbium-doped fiber-amplifier systems with complex structures[J]. Optics Express, 2004, 12(4): 531-544.
[2] [2] FALCONI M C, PALMA G, STARECKI F, et al. Dysprosium-doped chalcogenide master oscillator power amplifier(MOPA)for mid-IR emission[J]. Journal of Lightwave Technology, 2017, 35(2): 265-273.
[3] [3] LADACI A, GIRARD S, MESCIA L, et al. Optimized radiation-hardened erbium doped fiber amplifiers for long space missions[J]. Journal of Applied Physics, 2017, 121(16): 163104-1-163104-10.
[4] [4] WU T, TIAN F, WU Y, et al. Performance analysis and power tilt mitigation of ultra-wideband WDM transmission systems[J]. Photonics, 2023, 10 (5): 530-1-530-19.
[8] [8] HUANG Y, SAMOUD W, GUTTERMAN C L, et al. A machine learning approach for dynamic optical channel add/drop strategies that minimize EDFA power excursions[C]//42nd European Conference on Optical Communication, December 5, 2016, Dusseldorf, Germany. Berlin: VDE, 2016: 1-3.
[9] [9] HUANG Y, GUTTERMAN C L, SAMADI P, et al. Dynamic mitigation of EDFA power excursions with machine learning[J]. Optics Express, 2017, 25(3): 2245-2258.
[10] [10] ZHU S, GUTTERMAN C L, MO W, et al. Machine learning based prediction of erbium-doped fiber WDM line amplifier gain spectra [C]//2018 European Conference on Optical Communication (ECOC), September 23-27, 2018, Rome, Italy. New York: IEEE, 2018: 1-3.
[11] [11] YOU Y, JIANG Z, JANZ C. Machine learning-based EDFA gain model[C]//2018 European Conference on Optical Communication (ECOC), September 23-27, 2018, Rome, Italy. New York: IEEE, 2018: 1-3.
[12] [12] DAROS F, DEMOURA U C, YANKOV M P. Machine learning-based EDFA gain model generalizable to multiple physical devices[C]//2020 European Conference on Optical Communications (ECOC), December 6-10, 2020, Brussels, Belgium. New York: IEEE, 2020: 1-4.
[13] [13] YANKOV M P, DEMOURA U C, DAROS F. Power evolution modeling and optimization of fiber optic communication systems with EDFA repeaters[J]. Journal of Lightwave Technology, 2021, 39(10): 3154-3161.
[14] [14] WANG Z, KILPER D, CHEN T. Open EDFA gain spectrum dataset and its applications in data-driven EDFA gain modeling[J]. Journal of Optical Communications and Networking, 2023, 15(9): 588-599.
[15] [15] SALMELA L, TSIPINAKIS N, FOI A, et al. Predicting ultrafast nonlinear dynamics in fibre optics with a recurrent neural network [J]. Nature Machine Intelligence, 2021, 3(4): 344-354.
[17] [17] CHU T, PU G, YANG H, et al. AI-enabled fast and accurate modeling for femtosecond chirped-pulse amplification[C]//2022 Asia Communications and Photonics Conference(ACP), November 5-8, 2022, Shenzhen, China. New York: IEEE, 2022: 1899-1902.
[19] [19] YOLCU V, YUCEL M, AYDIN D. Optimization of gain flattened fiber Raman amplifier model with binary search equation based adaptive artificial bee colony (BSEAABC)algorithm[J]. Journal of the Faculty of Engineering and Architecture of Gazi University, 2024, 39(1): 29-38.
[21] [21] JIANG H M, XIE K, WANG Y F. Novel design of flat gain spectrum Raman fiber amplifiers based on ant colony optimization[J]. IEEE Phontonics Technology Letters, 2011, 23(23): 1823-1825.
[22] [22] JIANG H M, XIE K, WANG Y F. Optimization of pump parameters for gain flattened Raman fiber amplifiers based on artificial fish school algorithm[J]. Optics Communications, 2011, 284: 5480-5483.
[23] [23] ZIBAR D, FERRARI A, CURRI V, et al. Machine learning-based Raman amplifier design[C]//Optical Fiber Communication Conference, March 3-7, 2019, San Diego, USA. New York: IEEE, 2019: 1-3.
[24] [24] ZIBAR D, BRUSIN A M R, DEMOURA U C, et al. Inverse system design using machine learning: the Raman amplifier case[J]. Journal of Lightwave Technology, 2020, 38(4): 736-753.
[25] [25] DEMOURA U C, ROSA BRUSIN A M, CARENA A, et al. Simultaneous gain profile design and noise figure prediction for Raman amplifiers using machine learning[J]. Optics Letters, 2021, 46(5):1157-1160.
[26] [26] DEMOURA U C, ZIBAR D, BRUSIN A M R, et al. Fiber agnostic machine learning based Raman amplifier models[J]. Journal of Lightwave Technology, 2023, 41(1): 83-95.
[27] [27] CHEN Y F, DU J B, HUANG Y T, et al. Intelligent gain flattening in wavelength and space domain for FMF Raman amplification by machine learning based inverse design[J]. Optics Express, 2020, 28(8): 11911-11920.
[28] [28] HUANG Y T, DU J B, CHEN Y F, et al. Machine learning assisted inverse design for ultrafine, dynamic and arbitrary gain spectrum shaping of Raman amplification[J]. Photonics, 2021, 8(7): 260-1-260-10.
[29] [29] SOLTANI M, DAROS F, CARENA A, et al. Inverse design of a Raman amplifier in frequency and distance domains using convolutional neural networks[J]. Optics Letters, 2021, 46(11): 2650-2653.
[31] [31] TAY K G, PAKARZADEH H, HUONG A, et al. Gain prediction of dual-pump fiber optic parametric amplifier based on artificial neural network[J]. Optik, 2022, 253: 168579-1-168579-15.
[32] [32] MORETTE N, HAFERMANN H, FRIGNAC Y, et al. Machine learning enhancement of a digital twin for wavelength division multiplexing network performance prediction leveraging quality of transmission parameter refinement [J]. Journal of Optical Communications and Networking, 2023, 15(6): 333-343.
[33] [33] DAMICO A, STRAULLU S, NESPOLA A, et al. Using machine learning in an open optical line system controller[J]. Journal of Optical Communications and Networking, 2020, 12(6): C1-C11.
[34] [34] YANKOV M P, KAMINSKI P M, HANSEN H E, et al. SNR optimization of multi-span fiber optic communication systems employing EDFAs with non-flat gain and noise figure[J]. Journal of Lightwave Technology, 2021, 39(21): 6824-6832.
[35] [35] BARBOZA E A, BASTOS-FILHO C J A, FILHO J F M, et al. Local and global approaches for the adaptive control of a cascade of amplifiers[J]. Photonic Network Communications, 2017, 33: 194-207.
[36] [36] BARBOZA E A, BASTOS-FILHO C J A, FILHO J F M. Adaptive control of optical amplifier operating point using VOA and multi-objective optimization[J]. Journal of Lightwave Technology, 2019, 37(16): 3994-4000.
[37] [37] BARBOZA E A, SILVA A A B, PINHEIRO J C, et al. Optical amplifier response estimation considering non-flat input signals characterization based on artificial neural networks[J]. Journal of Lightwave Technology, 2021, 39(1): 208-215.
[38] [38] GILES C R, DESURVIRE E. Modeling erbium-doped fiber amplifiers[J]. Journal of Lightwave Technology, 1991, 9(2): 271-283.
[39] [39] NAMIKI S, EMORI Y. Ultrabroad-band Raman amplifiers pumped and gain-equalized by wavelength-division-multiplexed high-power laser diodes [J]. IEEE Journal of Selected Topics in Quantum Electronics, 2001, 7 (1): 3-16.
[40] [40] BALONIN N A, SERGEEV M B, VOSTRIKOV A A. Modern artificial intelligence network technologies: cloud computing [C]//2018 Wave Electronics and its Application in Information and Telecommunication Systems (WECONF), November 26-30, 2018, St.Petersburg, Russia. New York: IEEE, 2018: 1-5.
[41] [41] GARG S, AHUJA R, SINGH R, et al. An effective deep learning architecture leveraging BIRCH clustering for resource usage prediction of heterogeneous machines in cloud data center[J]. Cluster Computing, 2024, 27(5): 1-21.
[42] [42] KEDRA J, GOSSEC L. Big data and artificial intelligence: will they change our practice?[J]. Joint Bone Spine, 2020, 87(2): 107-109.
[43] [43] LENCI A, PADO S. Perspectives for natural language processing between AI, linguistics and cognitive science[J]. Frontiers in Artificial Intelligence, 2022, 5: 1059998-1-1059998-3.
[44] [44] SENG K P, ANG L M, NGHARAMIKE E. Artificial intelligence internet of things: a new paradigm of distributed sensor networks[J]. International Journal of Distributed Sensor Networks, 2022, 18(3): 1-27.
[45] [45] MEI G. Research on big data artificial intelligence technology based on deep learning [C]//The World Conference on Intelligent and 3-D Technologies (WCI3DT 2022)Methods, Algorithms and Applications, May 24-26, 2022, Online. Singapore: Springer Nature Singapore, 2023: 243-250.
[46] [46] GENTY G, SALMELA L, DUDLEY J M, et al. Machine learning and applications in ultrafast photonics[J]. Nature Photonics, 2021, 15(2): 91-101.
[47] [47] JIANG M, WU H, AN Y, et al. Fiber laser development enabled by machine learning: review and prospect[J]. PhotoniX, 2022, 3(1): 16-1-16-27.
[48] [48] ZHONG C, LI G, MENG Z. Beluga whale optimization: a novel nature-inspired metaheuristic algorithm[J]. Knowledge-Based Systems, 2022, 251: 109215-1-109215-23.
[49] [49] KARABOGA D, BASTURK B. A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC)algorithm[J]. Journal of Global Optimization, 2007, 39(3): 459-471.
[50] [50] KARABOGA D, GORKEMLI B, OZTURK C, et al. A comprehensive survey: artificial bee colony(ABC)algorithm and applications[J]. Artificial Intelligence Review, 2014, 42(1): 21-57.
[51] [51] ESSIAMBRE R J, KRAMER G, WINZER P J, et al. Capacity limits of optical fiber networks[J]. Journal of Lightwave Technol, 2010, 28(4): 662-701.
[53] [53] DESURVIRE E. Erbium-doped fiber amplifiers[M]. New York: John Wiley & Sons, 1994.
Get Citation
Copy Citation Text
ZHANG Ruihua, ZHANG Pengfei, WEI Huai, NING Tigang. Artificial intelligence algorithms applied to fiber amplifier[J]. Optical Communication Technology, 2025, 49(3): 34
Special Issue:
Received: Apr. 3, 2024
Accepted: Jun. 27, 2025
Published Online: Jun. 27, 2025
The Author Email: