Chinese Journal of Lasers, Volume. 47, Issue 8, 814001(2020)

Adaptive Iterative Denoising of Terahertz Image Based on Noise Estimation

Wang Yue* and Li Qi
Author Affiliations
  • National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
  • show less
    Figures & Tables(20)
    Diagram of quadtree decomposition[18]
    Flow chart of adaptive iterative denoising algorithm based on noise estimation
    Flow chart of noise level estimation algorithm
    Image of gear. (a) Experimental image; (b) standard image
    Flat block selection of experimental image
    Denoising results for different parameters. (a) h=1.4; (b) h=2.2; (c) h=2.3; (d) h=2.4; (e) h=3.2
    Flat block selection of iterative denoising image. (a) 2nd iteration; (b) 3rd iteration; (c) 4th iteration
    Iterative denoising results of gear image. (a) Image standard deviation; (b) 2nd iteration; (c) 3rd iteration; (d) 4th iteration
    Denoising results of gear image. (a) BNLM denoising; (b) NLM denoising
    Experimental image
    Weak texture block selection. (a) Experimental image; (b) 2nd iteration; (c) 3rd iteration; (d) 4th iteration; (e) 5th iteration
    Iterative denoising results of Fuwa image. (a) Image standard deviation; (b) noise standard deviation; (c) 2nd iteration; (d) 3rd iteration; (e) 4th iteration; (f) 5th iteration
    Denoising result of Fuwa image. (a) BNLM denoising; (b) NLM denoising
    • Table 1. Comparison of RPSNR and MMSSIM results of denoising images with different parameters

      View table

      Table 1. Comparison of RPSNR and MMSSIM results of denoising images with different parameters

      Experimental parameterRPSNRMMSSIM
      0.8516.7740.8853
      0.816.7740.8873
      T(l=3)0.516.7140.8873
      0.316.6940.8869
      0.1516.6830.8868
      0.8516.7880.8867
      0.816.7890.8876
      T(l=4)0.516.7890.8865
      0.316.7680.8869
      0.1516.7180.8868
      316.7810.8787
      416.7880.8892
      t516.7500.8892
      616.7150.8867
      716.6850.8868
      116.9870.8894
      216.8700.8889
      f316.7880.8867
      416.7320.8822
      516.6860.8779
      1.417.0560.8845
      2.217.0820.8897
      h2.317.0820.8913
      2.417.0770.8885
      3.216.9870.8842
    • Table 2. Noise estimation results of gear image

      View table

      Table 2. Noise estimation results of gear image

      Iteration2nd iteration3rd iteration4th iteration
      Estimationresultσ^2=7.285σ^3=6.191σ^4=2.716
    • Table 3. Comparison of denoising results of gear image

      View table

      Table 3. Comparison of denoising results of gear image

      ImageRPSNRMMSSIM
      Noise image16.3870.766
      Image obtained when imagestandard deviation is usedas denoising parameter17.0790.891
      Image after 2nd iteration17.0950.901
      Image after 3rd iteration17.0950.904
      Image after 4th iteration17.0950.904
    • Table 4. Objective quality parameters of BNLM and NLM denoising of gear image

      View table

      Table 4. Objective quality parameters of BNLM and NLM denoising of gear image

      Processing methodRPSNRMMSSIM
      BNLM17.0740.891
      NLM16.7530.879
    • Table 5. Noise estimation results of Fuwa image

      View table

      Table 5. Noise estimation results of Fuwa image

      Iteration1st iteration2nd iteration3rd iteration4th iteration5th iteration
      Estimation resultσ^1=44.191σ^2=19.666σ^3=27.435σ^4=28.310σ^5=31.758
    • Table 6. Comparison of denoising results of Fuwa image

      View table

      Table 6. Comparison of denoising results of Fuwa image

      ImageSSNT
      Noise image6.255
      Image obtained when imagestandard deviation is usedas denoising parameter6.313
      Image obtained when noisestandard deviation is usedas denoising parameter6.176
      Image after 2nd iteration6.234
      Image after 3rd iteration6.307
      Image after 4th iteration6.382
      Image after 5th iteration6.459
    • Table 7. Objective quality parameters of BNLM and NLM denoising of Fuwa image

      View table

      Table 7. Objective quality parameters of BNLM and NLM denoising of Fuwa image

      Processing methodBNLMNLM
      SSNT6.2965.661
    Tools

    Get Citation

    Copy Citation Text

    Wang Yue, Li Qi. Adaptive Iterative Denoising of Terahertz Image Based on Noise Estimation[J]. Chinese Journal of Lasers, 2020, 47(8): 814001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: terahertz technology

    Received: Jan. 7, 2020

    Accepted: --

    Published Online: Aug. 17, 2020

    The Author Email: Yue Wang (wangyue_hit0616@163.com)

    DOI:10.3788/CJL202047.0814001

    Topics