Chinese Journal of Lasers, Volume. 42, Issue 11, 1105003(2015)
Scattering Loss Analysis and Structure Optimization of Hollow-Core Photonic Bandgap Fibers
[1] [1] Cregan R F, Mangan B J, Knight J C, et al.. Single-mode photonic band gap guidance of light in air[J]. Science, 1999, 285(5433): 1537-1539.
[2] [2] Chai Lu, Hu Minglie, Fang Xiaohui, et al.. Advances in femtosecond laser technologies with photonic crystal fibers[J]. Chinese J Lasers, 2013, 40(1): 0101001.
[3] [3] Huang Chongde, Chen Dijun, Cai Haiwen, et al.. Laser frequency stabilization technology based on hollow-core photonics crystal fiber gas cell[J]. Chinese J Lasers, 2014, 41(8): 0802006.
[4] [4] Wang Haibin, Liu Ye, Wang Jinzu, et al.. Preparation of all-fiber low-pressure CO2 gas cell based on hollow-core photonic crystal fiber[J]. Acta Optica Sinica, 2013, 33(7): 0706007.
[5] [5] Poletti F, Petrovich M N, Richardson D J. Hollow-core photonic bandgap fibers: Technology and applications[J]. Nanophotonics, 2013, 2(5-6): 315-340.
[6] [6] Kim H K, Digonnet M J F, Kino G S. Air-core photonic-bandgap fiber-optic gyroscope[J]. J Lightwave Technol, 2006, 24(8): 3169-3174.
[7] [7] Digonnet M, Blin S, Kim H K, et al.. Sensitivity and stability of an air- core fibre- optic gyroscope[J]. Measurement Science & Technology, 2007, 18(10): 3089-3097.
[8] [8] Blin S, Kim H K, Digonnet M J F, et al.. Reduced thermal sensitivity of a fiber-optic gyroscope using an air-core photonic-bandgap fiber[J]. J Lightwave Technol, 2007, 25(3): 861-865.
[9] [9] Lloyd S W, Dangui V, Digonnet M J, et al.. Measurement of reduced backscattering noise in laser-driven fiber optic gyroscopes[J]. Opt Lett, 2010, 35(2): 121-123.
[10] [10] Xu X, Zhang Z, Zhang Z, et al.. Investigation of residual core ellipticity induced nonreciprocity in air-core photonic bandgap fiber optical gyroscope[J]. Opt Express, 2014, 22(22): 27228.
[11] [11] Saitoh K, Koshiba M. Confinement losses in air-guiding photonic bandgap fibers[J]. IEEE Photonic Technol Lett, 2003, 15(2): 236-238.
[12] [12] Roberts P J, Couny F, Sabert H, et al.. Ultimate low loss of hollow-core photonic crystal fibres[J]. Opt Express, 2005, 13(1): 236-244.
[13] [13] West J, Smith C, Borrelli N, et al.. Surface modes in air-core photonic band-gap fibers[J]. Opt Express, 2004, 12(8): 1485-1496.
[14] [14] Fokoua E N, Poletti F, Richardson D J. Analysis of light scattering from surface roughness in hollow-core photonic bandgap fibers [J]. Opt Express, 2012, 20(19): 20980-20991.
[15] [15] Amezcua-Correa R, Broderick N G, Petrovich M N, et al.. Design of 7 and 19 cells core air-guiding photonic crystal fibers for lowloss, wide bandwidth and dispersion controlled operation[J]. Opt Express, 2007, 15(26): 17577-17586.
[16] [16] Amezcua Correa R, Broderick N N, Petrovich M N, et al.. Comparison of mode properties of 7 and 19 cells core hollow-core photonic crystal fibers[C]. Optical Fiber Communication Conference, Optical Society of America, 2007: OML5.
[17] [17] Amezcua Correa R, Broderick N G, Petrovich M N, et al.. Realistic designs of silica hollow-core photonic bandgap fibers free of surface modes[C]. Optical Fiber Communication Conference, Optical Society of America, 2006: OFC1.
[18] [18] Roberts P, Williams D, Mangan B, et al.. Realizing low loss air core photonic crystal fibers by exploiting an antiresonant core surround[J]. Opt Express, 2005, 13(20): 8277-8285.
[19] [19] Fokoua E N, Sandoghchi S R, Chen Y, et al.. Accurate loss and surface mode modeling in fabricated hollow-core photonic bandgap fibers[C]. Optical Fiber Communications Conference and Exhibition (OFC) 2014, IEEE, 2014: 1-3.
Get Citation
Copy Citation Text
Song Jingming, Sun Kang, Xu Xiaobin. Scattering Loss Analysis and Structure Optimization of Hollow-Core Photonic Bandgap Fibers[J]. Chinese Journal of Lasers, 2015, 42(11): 1105003
Category: Fiber optics and optical communication
Received: Jun. 4, 2015
Accepted: --
Published Online: Sep. 24, 2022
The Author Email: Jingming Song (saskm@163.com)