Acta Optica Sinica, Volume. 42, Issue 10, 1022001(2022)

Design of Multi-Source Distributed Steady-State Solar Simulator

Chao Sun1,2, Zhiliang Jin2、**, Yang Song2, Zongquan Ling1,2, Kaiqiu Lan1,2, Yang Huang1,2, Mingliang Zhang1,2, and Daxi Xiong1,2、*
Author Affiliations
  • 1School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Suzhou 215000, Jiangsu, China
  • 2Center of Light and Health, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, Jiangsu, China
  • show less
    Figures & Tables(17)
    Schematic of effective light energy transfer
    Simulation and analysis of single light source system. (a) Schematic of simulation of single light source projection system; (b) spot distribution diagram of 900 mm projection lens on target surface with working distance of 900 mm; (c) simulated irradiance profile distribution in horizontal and vertical directions of spot center
    Performance results of single light source system (optical power is 1 W, wavelength is 555 nm) in uniform light region on target surface at different working distances. (a) Effective light energy transfer efficiency; (b) uniform light area and average irradiance
    Non-uniformity and average irradiance of 555 nm single light source in uniform region at different structural layers
    Tracking results of three-layer multi-light source solar simulator. (a) Schematic of optical simulation of light source structure and system; (b) irradiance distribution of target surface at working distance of 900 mm; (c) intensity distribution of target surface at working distance of 900 mm; (d) intensity distribution of target surface, with different curves representing different azimuth angles
    Normalized spectra of LED chips
    Fitting results of solar spectra. (a) Spectral fitting results between 350 nm and 1000 nm; (b) spectral fitting results between 400 nm and 1100 nm
    Structure diagram of solar simulator. (a) Light source box model; (b) physical solar simulator; (c) experimental equipment
    Test structure of solar simulator. (a) Output light spot, where pentacle represents position of spectral measuring point; (b) spectral matching of different measuring points in Fig. (a)
    Actual spot of light on target surface. (a) Light spot with peak wavelength of 464 nm (spot notch in upper left corner is from lead solder spot of LED chip); (b) irradiance detection process of simulated solar spot (target surface is on probe plane)
    Normalized irradiance measured on target surface
    Temporal instability of irradiance
    • Table 1. Efficiency of typical solar simulator

      View table

      Table 1. Efficiency of typical solar simulator

      Institution (time)LightsourceFeatureElectricpower of lightsource /WOptical powerin uniform area(irradiancenon-uniformity) /WSystemefficiency /%
      Anhui Institute ofOptics and FineMechanics (2017)[20]Xenon lampsLarge-area projectionsolar simulator280001263.000(class B)4.50
      Changchun Universityof Technology (2018)[13]LEDsMulti-light sourcearray collimation60 (opticalpower)13.295(class A)22.20(opticalefficiency)
      University ofKashan (2021)[12]LEDsPlanar arrangement ofLEDs with secondaryoptical design610.529(class A)0.88
    • Table 2. Classification of steady state solar simulators

      View table

      Table 2. Classification of steady state solar simulators

      ClassificationSpectralmatch to allintervals /%Spatialnon-uniformityof irradiance /%Long terminstability ofirradiance /%
      A75--12522
      B60--14055
      C40--2001010
    • Table 3. Light source parameters of solar simulator

      View table

      Table 3. Light source parameters of solar simulator

      Peakwavelength /nmFull width at halfmaximum /nmCurrent /AVoltage /VSimulated opticalpower /mWMeasured opticalpower /mWIrradiance /(mW·cm-2)
      42226.00.603.35608676.05.090
      44719.80.473.09484512.03.980
      46438.00.893.19704608.05.830
      48840.61.853.61658825.05.380
      51431.10.853.75453345.03.730
      60018.00.392.34142115.01.177
      62218.50.492.42321302.02.680
      66523.20.392.31339315.02.830
      67926.90.752.40400390.03.280
      70821.71.302.38560596.04.630
      74122.30.703.44561518.04.620
      78932.21.033.83765643.06.330
      82835.11.012.02640715.05.270
      86035.30.913.24751808.06.220
      95445.31.13/1.273.29/3.30900/9001118.0/1131.07.460/7.420
      568115.21.18/0.90/0.963.33/3.18/3.26978/978/978911.3/917.0/886.08.100/8.080/8.020
    • Table 4. Spectral matching

      View table

      Table 4. Spectral matching

      Wavelengthinterval /nmAM 1.5Girradiance /%Fitted spectralirradiance /%Position0 /%Position1 /%Position2 /%Position3 /%Class
      400--50018.418.6516.2617.9617.5516.11A
      500--60019.920.1320.6520.2519.0720.25A
      600--70018.417.6719.3919.0718.8918.80A
      700--80014.915.1215.2113.7815.5015.93A
      800--90012.512.3712.5212.4012.1111.22A
      900--110015.916.0715.9716.5416.8517.67A
    • Table 5. System efficiency

      View table

      Table 5. System efficiency

      Non-uniformityOptical powerof LEDs/WOptical power inuniform area /WArea /(mm×mm)Effective efficiencyof light transmission /%Efficiency ofsystem /%
      Simulation12.128.6593×9371.4-
      <2%12.333.6060×6030.27.01
      <5%12.336.4080×8051.912.04
    Tools

    Get Citation

    Copy Citation Text

    Chao Sun, Zhiliang Jin, Yang Song, Zongquan Ling, Kaiqiu Lan, Yang Huang, Mingliang Zhang, Daxi Xiong. Design of Multi-Source Distributed Steady-State Solar Simulator[J]. Acta Optica Sinica, 2022, 42(10): 1022001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Optical Design and Fabrication

    Received: Oct. 9, 2021

    Accepted: Dec. 6, 2021

    Published Online: May. 10, 2022

    The Author Email: Jin Zhiliang (jinzl@sibet.ac.cn), Xiong Daxi (xiongdx@sibet.ac.cn)

    DOI:10.3788/AOS202242.1022001

    Topics