Chinese Journal of Liquid Crystals and Displays, Volume. 40, Issue 8, 1219(2025)

Efficient siamese single object tracking based on hybrid feature fusion

Na LI*, Jinting PAN*, Rongji LI, and Yufei WANG
Author Affiliations
  • School of Communications and Information Engineering, Xi'an University of Posts and Telecommunications, Xi'an 710121, China
  • show less
    Figures & Tables(11)
    FFTracker network framework
    Hybrid feature fusion module. (a) Fast feature refinement unit; (b) Dual-branch feature aggregation unit.
    Success rates of FFTracker and other trackers on certain attributes
    Precision of FFTracker and other trackers on certain attributes
    Comparison of visual results of the algorithm proposed in this paper with two other efficient trackers on OTB100
    Comparison of visual results of the algorithm proposed in this paper with two other efficient trackers on LaSOT
    Attention maps on OTB100
    • Table 1. Experimental results on OTB100 dataset

      View table
      View in Article

      Table 1. Experimental results on OTB100 dataset

      BackboneModuleAUC/%P/%Parameters/MFLOPs/GSpeed/fps
      EfficientNet-V1ShuffleNet-V2MobileNet-V3MHAHFF
      42.657.35.70.5194
      61.582.315.51.4152
      59.480.513.51.2144
      66.788.112.40.7170
      57.377.315.21.4135
      54.075.013.11.3130
      63.086.411.60.8141
    • Table 2. Experimental results for different stacking depths of HFF on the OTB100 dataset

      View table
      View in Article

      Table 2. Experimental results for different stacking depths of HFF on the OTB100 dataset

      NParameters/MFLOPs/GAUC/%

      P/

      %

      GPU Speed/fps
      418.41.064.687.592
      315.70.966.188.090
      212.40.766.788.1170
      19.10.664.285.6227
    • Table 3. Performance comparison of the algorithm proposed in this paper with other object tracking algorithms

      View table
      View in Article

      Table 3. Performance comparison of the algorithm proposed in this paper with other object tracking algorithms

      TrackersLaSOTOTB100UAV123
      AUC/%PNorm/%P/%AUC/%P/%AUC/%P/%
      Non-LightweightATOM1949.356.148.266.386.262.984.2
      SiamGAT2053.963.353.071.091.664.684.3
      DiMP502156.565.056.967.687.365.085.6
      SiamBAN2251.459.852.169.290.360.479.5
      SiamRPN++749.656.949.169.189.861.180.4
      STARK-ST502366.476.371.268.589.769.189.9
      TransT1264.273.568.268.188.366.085.2
      LightweightLightTrack-M1852.558.651.766.186.046.960.9
      HiT-Tiny1454.860.552.954.370.758.776.6
      SiamFC533.642.033.957.876.552.373.1
      Ours54.065.153.966.788.144.961.8
    • Table 4. Comparison of parameters, FLOPs and GPU speed on LaSOT dataset

      View table
      View in Article

      Table 4. Comparison of parameters, FLOPs and GPU speed on LaSOT dataset

      TrackersParameters/MFLOPs/GSpeed/fps
      SiamBAN53.948.840
      SiamRPN++54.048.921
      SiamFC2.32.886
      SiamGAT14.217.370
      DiMP5043.110.457
      ATOM17.34.085
      STARK-ST5028.212.841
      LightTrack-M2.00.5115
      HiT-Tiny9.62.073
      TransT23.016.784
      Ours12.40.7170
    Tools

    Get Citation

    Copy Citation Text

    Na LI, Jinting PAN, Rongji LI, Yufei WANG. Efficient siamese single object tracking based on hybrid feature fusion[J]. Chinese Journal of Liquid Crystals and Displays, 2025, 40(8): 1219

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Apr. 28, 2025

    Accepted: --

    Published Online: Sep. 25, 2025

    The Author Email: Na LI (lina114@xupt.edu.cn), Jinting PAN (lcdcpjt@163.com)

    DOI:10.37188/CJLCD.2025-0097

    Topics