Optics and Precision Engineering, Volume. 30, Issue 3, 320(2022)

Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction

Yanchun YANG*, Xiaoyu GAO, Jianwu DANG, and Yangping WANG
Author Affiliations
  • School of Electronic and Information Engineering, Lanzhou Jiaotong University, Lanzhou730070, China
  • show less
    Figures & Tables(8)
    Window empirical mode decomposition
    Flow chart of algorithm based on window empirical mode decomposition
    Network architecture of generator
    Network architecture of discriminator
    Comparison of experimental results of different image fusion methods
    Indicator line chart
    • Table 1. Objective evaluation index of image fusion contrast experiment

      View table
      View in Article

      Table 1. Objective evaluation index of image fusion contrast experiment

      ImageFusion methodAGEIENSSIMMI
      Image1ASR6.089 849.085 96.182 40.770.378 6
      EP2.447 719.428 05.869 60.778 00.322 2
      CSMCA3.968 718.750 46.322 40.794 21.204 3
      ECNN4.576 820.485 76.459 80.845 71.125 4
      GAN3.806 013.930 35.758 10.800 00.138 5
      Proposed7.367 050.291 57.367 00.803 20.882 9
      Image2ASR6.633 340.386 16.436 40.698 30.324 1
      EP2.870 423.452 05.607 60.695 90.882 5
      CSMCA4.768 019.434 46.519 10.710 60.709 9
      ECNN4.742 118.867 56.482 10.712 40.795 6
      GAN3.016 913.523 74.562 80.758 90.114
      Proposed7.388 455.040 27.385 70.661 80.896 9
      Image3ASR3.547 622.188 75.947 80.938 60.262 4
      EP5.295 734.146 06.766 80.782 00.616 2
      CSMCA2.352 115.846 26.388 30.848 20.440 7
      ECNN2.185 419.357 86.258 40.854 60.798 4
      GAN4.321 318.8966.713 10.824 10.280 8
      Proposed6.325 440.236 47.112 30.845 60.812 7
      Image4ASR3.787 433.006 36.296 30.811 10.294 6
      EP6.632 034.297 06.979 90.558 40.453 5
      CSMCA4.031 817.754 16.686 20.687 90.596 3
      ECNN2.324 821.386 56.945 80.724 80.865 4
      GAN4.197 114.892 17.069 40.812 20.227 5
      Proposed6.712 345.796 07.510 90.782 81.125 6
      Image5ASR7.548 726.845 77.154 80.258 70.295 8
      EP7.857 438.311 76.808 50.727 20.363 4
      CSMCA4.707 518.262 76.690 20.673 10.275 1
      ECNN3.548 726.354 76.754 80.715 40.548 7
      GAN4.551 115.941 36.552 30.710 40.305 9
      Proposed7.195 554.262 07.223 00.737 50.791 5
      Image6ASR4.759 930.117 86.607 10.770 20.280 5
      EP5.419 533.449 77.093 60.723 90.888 1
      CSMCA3.094 919.237 46.737 30.777 50.772 7
      ECNN3.214 818.657 86.985 40.754 60.854 7
      GAN3.439 717.430 97.076 90.785 50.297 7
      Proposed5.936 546.171 87.610 70.832 71.533 0
    • Table 2. Running time of each method on TNO dataset

      View table
      View in Article

      Table 2. Running time of each method on TNO dataset

      Fusion algorithmRunning time
      ASR333.99
      EP0.13
      CSMCA405.69
      ECNN121.34
      GAN60.13
      Ours40.57
    Tools

    Get Citation

    Copy Citation Text

    Yanchun YANG, Xiaoyu GAO, Jianwu DANG, Yangping WANG. Infrared and visible image fusion based on WEMD and generative adversarial network reconstruction[J]. Optics and Precision Engineering, 2022, 30(3): 320

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Information Sciences

    Received: May. 27, 2021

    Accepted: --

    Published Online: Mar. 4, 2022

    The Author Email: Yanchun YANG (yangyanchun102@sina.com)

    DOI:10.37188/OPE.20223003.0320

    Topics