The Journal of Light Scattering, Volume. 35, Issue 3, 206(2023)
Advances in application of metalgraphitic nanocapsules in SERS
[1] [1] WANG Y-H, ZHENG S, YANG W-M, et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water [J]. Nature, 2021, 600(7887): 81-85.
[2] [2] SCHLüCKER S. Surface-enhanced Raman spectroscopy: concepts and chemical applications [J]. Angewandte Chemie (International ed in English), 2014, 53(19): 4756-4795.
[3] [3] ZHANG Y-J, ZE H, FANG P-P, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature Reviews Methods Primers, 2023, 3(1): 36.
[4] [4] SHIN H, CHOI B H, SHIM O, et al. Single test-based diagnosis of multiple cancer types using Exosome-SERS-AI for early stage cancers [J]. Nature Communications, 2023, 14(1): 1644.
[5] [5] SUN H, CONG S, ZHENG Z, et al. Metal-Organic Frameworks as Surface Enhanced Raman Scattering Substrates with High Tailorability [J]. Journal of the American Chemical Society, 2019, 141(2): 870-878.
[6] [6] HAN X X, RODRIGUEZ R S, HAYNES C L, et al. Surface-enhanced Raman spectroscopy [J]. Nature Reviews Methods Primers, 2022, 1(1): 87.
[7] [7] LANE L A, QIAN X, NIE S. SERS nanoparticles in medicine: from label-free detection to spectroscopic tagging [J]. Chemical Reviews, 2015, 115(19): 10489-10529.
[8] [8] LI S, XU J, WANG S, et al. Versatile metal graphitic nanocapsules for SERS bioanalysis [J]. Chinese Chemical Letters, 2019, 30(9): 1581-1592.
[9] [9] XU L, ZHANG H, TIAN Y, et al. Modified photochemical strategy to support highly-purity, dense and monodisperse Au nanospheres on graphene oxide for optimizing SERS detection [J]. Talanta, 2020, 209: 120535.
[10] [10] REN W, FANG Y, WANG E. A binary functional substrate for enrichment and ultrasensitive SERS spectroscopic detection of folic acid using graphene oxide/Ag nanoparticle hybrids [J]. ACS Nano, 2011, 5(8): 6425-6433.
[11] [11] KANCHANAPALLY R, SINHA S S, FAN Z, et al. Graphene oxide-gold nanocage hybrid platform for trace level identification of nitro explosives using a raman fingerprint [J]. The Journal of Physical Chemistry C, 2014, 118(13): 7070-7075.
[12] [12] FAN W, LEE Y H, PEDIREDDY S, et al. Graphene oxide and shape-controlled silver nanoparticle hybrids for ultrasensitive single-particle surface-enhanced Raman scattering (SERS) sensing [J]. Nanoscale, 2014, 6(9): 4843-4851.
[13] [13] OUYANG L, HU Y, ZHU L, et al. A reusable laser wrapped graphene-Ag array based SERS sensor for trace detection of genomic DNA methylation [J]. Biosensors and Bioelectronics, 2017, 92: 755-762.
[14] [14] QIU Y, DENG D, DENG Q, et al. Synthesis of magnetic Fe3O4-Au hybrids for sensitive SERS detection of cancer cells at low abundance [J]. Journal of Materials Chemistry B, 2015, 3(22): 4487-4495.
[15] [15] HU F, LIN H, ZHANG Z, et al. Smart liquid SERS substrates based on Fe3O4/Au nanoparticles with reversibly tunable enhancement factor for practical quantitative detection [J]. Scientific Reports, 2014, 4(1): 1-10.
[16] [16] ARORA V, SOOD A, SHAH J, et al. Synthesis and characterization of thiolated pectin stabilized gold coated magnetic nanoparticles [J]. Materials Chemistry and Physics, 2016, 173: 161-167.
[17] [17] LI J F, HUANG Y F, DING Y, et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Nature, 2010, 464(7287): 392-395.
[18] [18] QIU Z, ZHANG M, WU D Y, et al. Raman spectroscopic investigation on TiO2-N719 dye interfaces using Ag@ TiO2 nanoparticles and potential correlation strategies [J]. ChemPhysChem, 2013, 14(10): 2217-2224.
[19] [19] ZHANG C, LIU X, XU Z, et al. Multichannel stimulus-responsive nanoprobes for H2O2 sensing in diverse biological milieus [J]. Analytical Chemistry, 2020, 92(18): 12639-12646.
[20] [20] LIN X D, UZAYISENGA V, LI J F, et al. Synthesis of ultrathin and compact Au@ MnO2 nanoparticles for shell‐isolated nanoparticle‐enhanced Raman spectroscopy (SHINERS) [J]. Journal of Raman Spectroscopy, 2012, 43(1): 40-45.
[21] [21] CHOPRA N, BACHAS L G, KNECHT M R. Fabrication and biofunctionalization of carbon-encapsulated Au nanoparticles [J]. Chemistry of Materials, 2009, 21(7): 1176-1178.
[22] [22] TURCHENIUK K, BOUKHERROUB R, SZUNERITS S. Gold-graphene nanocomposites for sensing and biomedical applications [J]. Journal of Materials Chemistry B, 2015, 3(21): 4301-4324.
[23] [23] UZAYISENGA V, LIN X-D, LI L-M, et al. Synthesis, characterization, and 3D-FDTD simulation of Ag@ SiO2 nanoparticles for shell-isolated nanoparticle-enhanced Raman spectroscopy [J]. Langmuir, 2012, 28(24): 9140-9146.
[24] [24] GAN Z, ZHAO A, ZHANG M, et al. Controlled synthesis of Au-loaded Fe3O4@C composite microspheres with superior SERS detection and catalytic degradation abilities for organic dyes [J]. Dalton Transactions, 2013, 42(24): 8597-8605.
[25] [25] ZHANG X, ZHU Y, YANG X, et al. Multifunctional Fe3O4@ TiO2@ Au magnetic microspheres as recyclable substrates for surface-enhanced Raman scattering [J]. Nanoscale, 2014, 6(11): 5971-5979.
[26] [26] LI L, ZHAO A, WANG D, et al. Fabrication of cube-like Fe3O4@SiO2@Ag nanocomposites with high SERS activity and their application in pesticide detection [J]. Journal of Nanoparticle Research, 2016, 18(7): 178.
[27] [27] KRAJCZEWSKI J, KUDELSKI A. Shell-Isolated Nanoparticle-Enhanced Raman Spectroscopy [J]. Frontiers in Chemistry, 2019, 7: 410.
[28] [28] YANG Y, LI S, BU H, et al. Metal Graphitic Nanocapsules for Theranostics in Harsh Conditions [J]. Frontiers in Chemistry, 2022, 10: 909110.
[29] [29] LI S, YANG Y, WANG S, et al. Advances in metal graphitic nanocapsules for biomedicine [J]. Exploration (Beijing, China), 2022, 2(6): 20210223.
[30] [30] ZHANG Y, ZOU Y, LIU F, et al. Stable graphene-isolated-au-nanocrystal for accurate and rapid surface enhancement Raman scattering analysis[J]. Analytical Chemistry, 2016, 88(21): 10611-10616.
[33] [33] SADHASIVAM S, SAVITHA S, WU C-J, et al. Carbon encapsulated iron oxide nanoparticles surface engineered with polyethylene glycol-folic acid to induce selective hyperthermia in folate over expressed cancer cells [J]. International Journal of Pharmaceutics, 2015, 480(1): 8-14.
[34] [34] SUN X, LI Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles [J]. Angewandte Chemie (International ed in English), 2004, 43(5): 597-601.
[35] [35] DING D, XU Y, ZOU Y, et al. Graphitic nanocapsules: design, synthesis and bioanalytical applications [J]. Nanoscale, 2017, 9(30): 10529-10543.
[36] [36] YAN Z, PENG Z, TOUR J M. Chemical vapor deposition of graphene single crystals [J]. Accounts of Chemical Research, 2014, 47(4): 1327-1337.
[37] [37] LI X, CAI W, AN J, et al. Large-area synthesis of high-quality and uniform graphene films on copper foils [J]. Science (New York, NY), 2009, 324(5932): 1312-4.
[38] [38] SUN X, TABAKMAN S M, SEO W S, et al. Separation of nanoparticles in a density gradient: FeCo@C and gold nanocrystals [J]. Angewandte Chemie (International ed in English), 2009, 48(5): 939-942.
[39] [39] ZHANG Y, ZOU Y, LIU F, et al. Stable Graphene-Isolated-Au-Nanocrystal for Accurate and Rapid Surface Enhancement Raman Scattering Analysis [J]. Analytical Chemistry, 2016, 88(21): 10611-10616.
[40] [40] LAI X F, ZOU Y X, WANG S S, et al. Modulating the Morphology of Gold Graphitic Nanocapsules for Plasmon Resonance-Enhanced Multimodal Imaging [J]. Analytical Chemistry, 2016, 88(10): 5385-5391.
[41] [41] ZHANG L, ZHANG J, ZHENG Z, et al. Interaction-Transferable Graphene-Isolated Superstable AuCo Nanocrystal-Enabled Direct Cyanide Capture [J]. Analytical Chemistry, 2019, 91(14): 8762-8766.
[42] [42] SONG Z L, ZHAO X H, LIU W N, et al. Magnetic graphitic nanocapsules for programmed DNA fishing and detection [J]. Small (Weinheim an der Bergstrasse, Germany), 2013, 9(6): 951-957.
[43] [43] HAN Y, LI P, XU Y, et al. Fluorescent nanosensor for probing histone acetyltransferase activity based on acetylation protection and magnetic graphitic nanocapsules [J]. Small (Weinheim an der Bergstrasse, Germany), 2015, 11(7): 877-885.
[44] [44] ZOU Y, ZHANG Y, XU Y, et al. Portable and Label-Free Detection of Blood Bilirubin with Graphene-Isolated-Au-Nanocrystals Paper Strip [J]. Analytical Chemistry, 2018, 90(22): 13687-13694.
[45] [45] SONG Z L, DAI X, LI M, et al. Synthesis of amphiphilic graphitic silver nanoparticles with inherent internal standards: an efficient strategy for reliable quantitative SERS analysis in common fluids [J]. Chemical Communications (Cambridge, England), 2018, 54(62): 8618-8621.
[46] [46] ZOU Y, HUANG S, LIAO Y, et al. Isotopic graphene-isolated-Au-nanocrystals with cellular Raman-silent signals for cancer cell pattern recognition [J]. Chemical Science, 2018, 9(10): 2842-2849.
[47] [47] DONG Q, WANG X, HU X, et al. Simultaneous Application of Photothermal Therapy and an Anti-inflammatory Prodrug using Pyrene-Aspirin-Loaded Gold Nanorod Graphitic Nanocapsules [J]. Angewandte Chemie (International ed in English), 2018, 57(1): 177-181.
[48] [48] DING S-Y, YI J, LI J-F, et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials [J]. Nature Reviews Materials, 2016, 1(6).
[49] [49] ZHAO X H, ZHAO S Y, SONG Z L, et al. Alkyne functionalized graphene-isolated-Au-nanocrystal for the ratiometric SERS sensing of alkaline phosphatase with acetonitrile solvent as an internal standard [J]. Sens Actuator B-Chem, 2021, 331: 9.
[50] [50] BIAN X, SONG Z L, QIAN Y, et al. Fabrication of Graphene-isolated-Au-nanocrystal Nanostructures for Multimodal Cell Imaging and Photothermal-enhanced Chemotherapy [J]. Scientific Reports, 2014, 4.
[51] [51] SONG Z L, CHEN Z, BIAN X, et al. Alkyne-functionalized superstable graphitic silver nanoparticles for Raman imaging [J]. J Am Chem Soc, 2014, 136(39): 13558-13561.
[52] [52] LI S K, ZHU Z T, CAI X Q, et al. Versatile Graphene-Isolated AuAg-Nanocrystal for Multiphase Analysis and Multimodal Cellular Raman Imaging(dagger) [J]. Chinese Journal of Chemistry, 2021, 39(6): 1491-1497.
[53] [53] LI S, LI Z, HAO Q, et al. Ultrastable graphene isolated AuAg nanoalloy for SERS biosensing and photothermal therapy of bacterial infection [J]. Chinese Chemical Letters, 2023: 108636.
[54] [54] MARKS H, SCHECHINGER M, GARZA J, et al. Surface enhanced Raman spectroscopy (SERS) for in vitro diagnostic testing at the point of care [J]. Nanophotonics, 2017, 6(4): 681-701.
[55] [55] ZHANG Y, ZOU Y X, LIU F, et al. Stable Graphene-Isolated-Au-Nanocrystal for Accurate and Rapid Surface Enhancement Raman Scattering Analysis [J]. Analytical Chemistry, 2016, 88(21): 10611-10616.
[56] [56] SONG Z L, DAI X, LI M R, et al. Synthesis of amphiphilic graphitic silver nanoparticles with inherent internal standards: an efficient strategy for reliable quantitative SERS analysis in common fluids [J]. Chemical Communications, 2018, 54(62): 8618-8621.
[57] [57] LIU Z, LI S, YIN Z, et al. Stabilizing Enzymes in Plasmonic Silk Film for Synergistic Therapy of In Situ SERS Identified Bacteria [J]. Adv Sci (Weinh), 2022, 9(6): e2104576.
[58] [58] SHEN W, TIANHUAN P, SHENGKAI L, et al. Natural interface-mediated self-assembly of graphene-isolated-nanocrystals for plasmonic arrays construction and personalized information acquisition [J]. Nano Research, 2022, 15(10): 9327-9333.
[59] [59] ZHANG L, LIU F, ZOU Y, et al. Surfactant-Free Interface Suspended Gold Graphitic Surface-Enhanced Raman Spectroscopy Substrate for Simultaneous Multiphase Analysis [J]. Anal Chem, 2018, 90(19): 11183-11187.
[62] [62] MIRANDA O R, AHMADI T S. Effects of intensity and energy of CW UV light on the growth of gold nanorods [J]. J Phys Chem B, 2005, 109(33): 15724-15734.
[63] [63] XU W, LING X, XIAO J, et al. Surface enhanced Raman spectroscopy on a flat graphene surface [J]. Proc Natl Acad Sci U S A, 2012, 109(24): 9281-9286.
[64] [64] YAMAKOSHI H, DODO K, PALONPON A, et al. Alkyne-tag Raman imaging for visualization of mobile small molecules in live cells [J]. J Am Chem Soc, 2012, 134(51): 20681-20689.
[65] [65] ZHANG Y, QIAN J, WANG D, et al. Multifunctional gold nanorods with ultrahigh stability and tunability for in vivo fluorescence imaging, SERS detection, and photodynamic therapy [J]. Angew Chem Int Ed Engl, 2013, 52(4): 1148-1151.
[66] [66] NIE X K, XU Y T, SONG Z L, et al. Magnetic-graphitic-nanocapsule templated diacetylene assembly and photopolymerization for sensing and multicoded anti-counterfeiting [J]. Nanoscale, 2014, 6(21): 13097-13103.()
Get Citation
Copy Citation Text
YIN Zhiwei, WEN Yijing, SHI Rui, XIA Xin, WANG Shen, CAO Xiaoxu, CHENG Yuqi, ZENG Jiayu, LI Shengkai, CHEN Zhuo. Advances in application of metalgraphitic nanocapsules in SERS[J]. The Journal of Light Scattering, 2023, 35(3): 206
Category:
Received: May. 9, 2023
Accepted: --
Published Online: Nov. 17, 2023
The Author Email: Zhiwei YIN (yzw@hnu.edu.cn)