Optics and Precision Engineering, Volume. 30, Issue 17, 2147(2022)
Automatic classification of retinopathy with attention ConvNeXt
[1] LI T, BO W, HU C Y et al. Applications of deep learning in fundus images: a review[J]. Medical Image Analysis, 69, 101971(2021).
[2] ALYOUBI W L, SHALASH W M, ABULKHAIR M F. Diabetic retinopathy detection through deep learning techniques: a review[J]. Informatics in Medicine Unlocked, 20, 100377(2020).
[3] XU K L, FENG D W, MI H B. Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image[J]. Molecules (Basel, Switzerland), 22, 2054(2017).
[4] JIANG H Y, YANG K, GAO M D et al. An interpretable ensemble deep learning model for diabetic retinopathy disease classification[J]. Annual International Conference of the IEEE Engineering in Medicine and Biology Society IEEE Engineering in Medicine and Biology Society Annual International Conference, 2019, 2045-2048(2019).
[5] LI X G, PANG T T, XIONG B et al. Convolutional neural networks based transfer learning for diabetic retinopathy fundus image classification[C], 1-11(16).
[6] [6] 6韦哲, 赵刚, 王能才, 等. 基于深度学习的糖尿病视网膜分类方法研究[J]. 中国医学装备, 2020, 17(10): 11-15. doi: 10.3969/J.ISSN.1672-8270.2020.10.004WEIZH, ZHAOG, WANGN C, et al. Study on the classification method of diabetic retina based on in-depth learning[J]. China Medical Equipment, 2020, 17(10): 11-15.(in Chinese). doi: 10.3969/J.ISSN.1672-8270.2020.10.004
[7] CHOLLET F. Xception: deep learning with depthwise separable convolutions[C], 21, 1800-1807(2017).
[8] [8] 8王嘉良, 罗健旭, 刘斌, 等. 基于R-FCN算法的糖尿病眼底病变自动诊断[J]. 计算机工程与应用, 2020, 56(4): 109-114.WANGJ L, LUOJ X, LIUB, et al. Automatic detection of diabetic retinopathy based on R-FCN algorithm[J]. Computer Engineering and Applications, 2020, 56(4): 109-114.(in Chinese)
[9] LIN Z W, GUO R Q, WANG Y J et al. A Framework for Identifying Diabetic Retinopathy Based on Anti-noise Detection and Attention-based Fusion[M]. Medical Image Computing and Computer Assisted Intervention-MICCAI 2018, 74-82(2018).
[10] [10] 10郑雯, 沈琪浩, 任佳. 基于Improved DR-Net算法的糖尿病视网膜病变识别与分级[J]. 光学学报, 2021, 41(22): 72-83. doi: 10.3788/aos202141.2210002ZHENGW, SHENQ H, RENJ. Recognition and classification of diabetic retinopathy based on improved DR-net algorithm[J]. Acta Optica Sinica, 2021, 41(22): 72-83.(in Chinese). doi: 10.3788/aos202141.2210002
[11] [11] 11谢云霞, 黄海于, 胡建斌. 基于深度卷积神经网络的糖尿病视网膜病变分期及病灶检测[J]. 计算机应用, 2020, 40(8): 2460-2464. doi: 10.11772/j.issn.1001-9081.2019122198XIEY X, HUANGH Y, HUJ B. Staging and lesion detection of diabetic retinopathy based on deep convolution neural network[J]. Journal of Computer Applications, 2020, 40(8): 2460-2464.(in Chinese). doi: 10.11772/j.issn.1001-9081.2019122198
[12] GRAHAM B. Kaggle diabetic retinopathy detection competition report[report]. University of Warwick, Tech(2015).
[13] LIU Z, LIN Y T, CAO Y et al. Swin transformer: hierarchical vision transformer using shifted windows[C], 10, 10012-10022(2021).
[15] HUANG G, LIU Z, VAN DER MAATEN L et al. Densely connected convolutional networks[C], 2261-2269(2016).
[16] ZHANG X Y, ZHOU X Y, LIN M X et al. ShuffleNet: an extremely efficient convolutional neural network for mobile devices[C], 6848-6856(2018).
Get Citation
Copy Citation Text
Wenbo HUANG, Yuxiang HUANG, Yuan YAO, Yang YAN. Automatic classification of retinopathy with attention ConvNeXt[J]. Optics and Precision Engineering, 2022, 30(17): 2147
Category: Information Sciences
Received: May. 31, 2022
Accepted: --
Published Online: Oct. 20, 2022
The Author Email: Wenbo HUANG (huangwenbo@sina.com)