Photonics Research, Volume. 9, Issue 5, 893(2021)

Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass

Renduo Qi1, Qiancheng Xu1, Ning Wu1, Kaiyu Cui1,2,3, Wei Zhang1,2,3、*, and Yidong Huang1,2,3
Author Affiliations
  • 1Beijing National Research Center for Information Science and Technology (BNRist), Beijing Innovation Center for Future Chips, Electronic Engineering Department, Tsinghua University, Beijing 100084, China
  • 2Frontier Science Center for Quantum Information, Beijing 100084, China
  • 3Beijing Academy of Quantum Information Sciences, Beijing 100193, China
  • show less
    References(35)

    [1] A. G. Krause, M. Winger, T. D. Blasius, Q. Lin, O. Painter. A high-resolution microchip optomechanical accelerometer. Nat. Photonics, 6, 768-772(2012).

    [2] E. Gavartin, P. Verlot, T. J. Kippenberg. A hybrid on-chip optomechanical transducer for ultrasensitive force measurements. Nat. Nanotechnol., 7, 509-514(2012).

    [3] Y. Chen, W. S. Fegadolli, W. M. Jones, A. Scherer, M. Li. Ultrasensitive gas-phase chemical sensing based on functionalized photonic crystal nanobeam cavities. ACS Nano, 8, 522-527(2014).

    [4] Y. C. Liu, Y. F. Xiao, X. Luan, C. W. Wong. Dynamic dissipative cooling of a mechanical resonator in strong coupling optomechanics. Phys. Rev. Lett., 110, 153606(2013).

    [5] S. Manipatruni, J. T. Robinson, M. Lipson. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett., 102, 213903(2009).

    [6] F. Ruesink, M. A. Miri, A. Alù, E. Verhagen. Nonreciprocity and magnetic-free isolation based on optomechanical interactions. Nat. Commun., 7, 13662(2016).

    [7] M. Hossein-Zadeh, K. J. Vahala. Observation of optical spring effect in a microtoroidal optomechanical resonator. Opt. Lett., 32, 1611-1613(2007).

    [8] X. Sun, X. Zhang, H. X. Tang. High-Q silicon optomechanical microdisk resonators at gigahertz frequencies. Appl. Phys. Lett., 100, 173116(2012).

    [9] M. Eichenfield, J. Chan, R. M. Camacho, K. J. Vahala, O. Painter. Optomechanical crystals. Nature, 462, 78-82(2009).

    [10] J. Gomis-Bresco, D. Navarro-Urrios, M. Oudich, S. El-Jallal, A. Griol, D. Puerto, E. Chavez, Y. Pennec, B. Djafari-Rouhani, F. Alzina, A. Martínez, C. M. S. Torres. A one-dimensional optomechanical crystal with a complete phononic band gap. Nat. Commun., 5, 4452(2014).

    [11] X. Zhang, G. Zhou, P. Shi, H. Du, T. Lin, J. Teng, F. S. Chau. On-chip integrated optofluidic complex refractive index sensing using silicon photonic crystal nanobeam cavities. Opt. Lett., 41, 1197-1200(2016).

    [12] S. C. Wu, L. G. Qin, J. Jing, T. M. Yan, J. Lu, Z. Y. Wang. Microwave-controlled optical double optomechanically induced transparency in a hybrid piezo-optomechanical cavity system. Phys. Rev. A, 98, 013807(2018).

    [13] W. Jiang, R. N. Patel, F. M. Mayor, T. P. McKenna, P. Arrangoiz-Arriola, C. J. Sarabalis, J. D. Witmer, R. V. A. N. Laer, A. H. Safavi-Naeini. Lithium niobate piezo-optomechanical crystals. Optica, 6, 845-853(2019).

    [14] J. Chan, A. H. Safavi-Naeini, J. T. Hill, S. Meenehan, O. Painter. Optimized optomechanical crystal cavity with acoustic radiation shield. Appl. Phys. Lett., 101, 081115(2012).

    [15] Y. Li, K. Cui, X. Feng, Y. Huang, Z. Huang, F. Liu, W. Zhang. Optomechanical crystal nanobeam cavity with high optomechanical coupling rate. J. Opt., 17, 045001(2015).

    [16] C. J. Sarabalis, J. T. Hill, A. H. Safavi-Naeini. Guided acoustic and optical waves in silicon-on-insulator for Brillouin scattering and optomechanics. APL Photon., 1, 071301(2016).

    [17] Z. Feng, J. Ma, X. Sun. Parity–time-symmetric mechanical systems by the cavity optomechanical effect. Opt. Lett., 43, 4088-4091(2018).

    [18] K. Fang, M. H. Matheny, X. Luan, O. Painter. Optical transduction and routing of microwave phonons in cavity-optomechanical circuits. Nat. Photonics, 10, 489-496(2016).

    [19] B. J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nat. Photonics, 5, 141-148(2011).

    [20] T. Wang, X. Gai, W. Wei, R. Wang, Z. Yang, X. Shen, S. Madden, B. Luther-Davies. Systematic z-scan measurements of the third order nonlinearity of chalcogenide glasses. Opt. Mater. Express, 4, 1011-1022(2014).

    [21] C. G. Poulton, R. Pant, B. J. Eggleton. Acoustic confinement and stimulated Brillouin scattering in integrated optical waveguides. J. Opt. Soc. Am. B, 30, 2657-2664(2013).

    [22] R. Pant, C. G. Poulton, D.-Y. Choi, H. Mcfarlane, S. Hile, E. Li, L. Thevenaz, B. Luther-Davies, S. J. Madden, B. J. Eggleton. On-chip stimulated Brillouin scattering. Opt. Express, 19, 8285-8290(2011).

    [23] M. Merklein, I. V. Kabakova, T. F. S. Büttner, D. Y. Choi, B. Luther-Davies, S. J. Madden, B. J. Eggleton. Enhancing and inhibiting stimulated Brillouin scattering in photonic integrated circuits. Nat. Commun., 6, 6396(2015).

    [24] B. J. Eggleton, C. G. Poulton, R. Pant. Inducing and harnessing stimulated Brillouin scattering in photonic integrated circuits. Adv. Opt. Photon., 5, 536-587(2013).

    [25] C. Li, P. Guo, W. Huang, W. Zhang, P. Xu, P. Zhang. Reverse-strip-structure Ge28Sb12Se60 chalcogenide glass waveguides prepared by micro-trench filling and lift-off. J. Opt. Soc. Am. B, 37, 82-87(2020).

    [26] J. S. Sanghera, L. B. Shaw, I. D. Aggarwal. Applications of chalcogenide glass optical fibers. C. R. Chim., 5, 873-883(2002).

    [27] M. Aspelmeyer, T. J. Kippenberg, F. Marquardt. Cavity optomechanics. Rev. Mod. Phys., 86, 1391-1452(2014).

    [28] S. G. Johnson, M. Ibanescu, M. A. Skorobogatiy, O. Weisberg, J. D. Joannopoulos, Y. Fink. Perturbation theory for Maxwell’s equations with shifting material boundaries. Phys. Rev. E, 65, 066611(2002).

    [29] D. K. Biegelsen. Photoelastic tensor of silicon and the volume dependence of the average gap. Phys. Rev. Lett., 32, 1196-1199(1974).

    [30] A. H. Safavi-Naeini, O. Painter. Design of optomechanical cavities and waveguides on a simultaneous bandgap phononic-photonic crystal slab. Opt. Express, 18, 14926-14943(2010).

    [31] R. W. Dixon. Photoelastic properties of selected materials and their relevance for applications to acoustic light modulators and scanners. J. Appl. Phys., 38, 5149-5153(1967).

    [32] Y. Akahane, T. Asano, B. S. Song, S. Noda. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature, 425, 944-947(2003).

    [33] T. Xu, M. S. Wheeler, S. V. Nair, H. E. Ruda, M. Mojahedi, J. S. Aitchison. Highly confined mode above the light line in a two-dimensional photonic crystal slab. Appl. Phys. Lett., 93, 241105(2008).

    [34] T. Huan, R. Zhou, H. Ian. Dynamic entanglement transfer in a double-cavity optomechanical system. Phys. Rev. A, 92, 022301(2015).

    [35] U. S. Sainadh, A. Narayanan. Mechanical switch for state transfer in dual-cavity optomechanical systems. Phys. Rev. A, 88, 033802(2013).

    Tools

    Get Citation

    Copy Citation Text

    Renduo Qi, Qiancheng Xu, Ning Wu, Kaiyu Cui, Wei Zhang, Yidong Huang, "Nonsuspended optomechanical crystal cavities using As2S3 chalcogenide glass," Photonics Res. 9, 893 (2021)

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Nanophotonics and Photonic Crystals

    Received: Dec. 18, 2020

    Accepted: Mar. 21, 2021

    Published Online: May. 7, 2021

    The Author Email: Wei Zhang (zwei@tsinghua.edu.cn)

    DOI:10.1364/PRJ.417933

    Topics