Journal of Quantum Optics, Volume. 29, Issue 2, 20502(2023)
Impact of Coherent Feedback Phase on Normal-Mode Splitting in an Optomechanical System
[1] [1] FABRE C, PINARD M, BOURZEIX S, et al. Quantum-noise reduction using a cavity with a movable mirror[J]. Physical Review A, 1994, 49(2), 1337-1343 DOI:10.1103/PhysRevA.49.1337.
[2] [2] MANCINI S, TOMBESI P. Quantum noise reduction by radiation pressure[J]. Physical Review A, 1994, 49(5), 4055-4065 DOI:10.1103/PhysRevA.49.4055.
[3] [3] BHATTACHARYA M, GISCARD P L, MEYSTRE P. Entangling the rovibrational modes of a macroscopic mirror using radiation pressure[J]. Physical Review A, 2008, 77(3): 030303 DOI:10.1103/PhysRevA.77.030303.
[4] [4] HARTMANN M J, PLENIO M B. Steady state entanglement in the mechanical vibrations of two dielectric membranes[J]. Physical review letters, 2008, 101(20): 200503 DOI:10.1103/PhysRevLett.101.200503.
[5] [5] LIU Y C, SHEN Y F, GONG Q H, et al. Optimal limits of cavity optomechanical cooling in the strong-coupling regime[J]. Physical Review A, 2014, 89 (5), 053821 DOI: 10.1103/PhysRevA.89.053821.
[6] [6] LIU Y C, LIU R S, DONG C H, et al. Cooling mechanical resonators to the quantum ground state from room temperature[J]. Physical Review A, 2015, 91(1), 013824 DOI: 10.1103/PhysRevA.91.013824.
[7] [7] WILSON-RAE I, NOOSHI N, ZWERGER W, et al. Theory of ground state cooling of a mechanical oscillator using dynamical backaction[J]. Physical Review letter, 2007, 99(9), 093901 DOI:10.1103/PhysRevLett.99.093901.
[8] [8] MARQUARDT F, CHEN J P, CLERK A A. Quantum theory of cavity-assisted sideband cooling of mechanical motion[J]. Physical Review letter, 2007, 99(9), 093902 DOI: 10.1103/PhysRevLett.99.093902.
[9] [9] PARK Y S, WANG H. Resolved-sideband and cryogenic cooling of an optomechanical resonator[J]. Nature Physics, 2009, 5(7), 489-493 DOI: org/10.1038/nphys1303.
[10] [10] CHAN J, ALEGRE T P, SAFAVI-NAEINI A H, et al. Laser cooling of a nanomechanical oscillator into its quantum ground state[J]. Nature, 2011, 478(7367), 89-92 DOI: 10.1038/nature10461.
[11] [11] ZHANG J, LIU Y X, NORI F. Cooling and squeezing the fluctuations of a nanomechanical beam by indirect quantum feedback control[J]. Physical Review A, 2009, 79(5), 052102 DOI: 10.1103/PhysRevA.79.052102.
[12] [12] SCHFERMEIER C, KERDONCUFF H, HOFF U, et al. Quantum enhanced feedback cooling of a mechanical oscillator using nonclassical light[J]. Nature Communications, 2016, 7(1), 13628 DOI: 10.1038/ncomms13628.
[13] [13] YAN Z H, JIA X J, XIE C D, et al. Coherent feedback control of multipartite quantum entanglement for optical fields[J]. Physical Review A, 2011, 84(6), 062304 DOI: 10.1103/PhysRevA.84.062304.
[14] [14] LI J, LI G, ZIPPILLI S, et al. Enhanced entanglement of two different mechanical resonators via coherent feedback[J]. Physical Review A, 2017, 95(4):043819 DOI: 10.1103/PhysRevA.95.043819.
[15] [15] ERNZER M, AGUILERA M B, BRUNELLI M, et al. Optical coherent feedback control of a mechanical oscillator[J]. 2022, arXiv:2210.07674.
[16] [16] DOBRINDT J M. Parametric Normal-Mode Splitting in Cavity Optomechanics[J]. Physical Review Letters, 2008, 101(26), 263602 DOI: 10.1103/PhysRevLett.101.263602.
[17] [17] GROBLACHER S, HAMMERER K, VANNER M R, et al. Observation of strong coupling between a micromechanical resonator and an optical cavity field[J]: Nature, 2009, 460(7256), 724-727 DOI:10.1038/nature08171.
[18] [18] HUANG S, AGARWAL G S. Normal-mode splitting in a coupled system of a nanomechanical oscillator and a parametric amplifier cavity[J]. Physical Review A, 2009, 80(3):033807 DOI: 10.1103/PhysRevA.80.033807.
[19] [19] LIU Y C, XIAO Y F, LUAN X S, et al. Coupled cavities for motional ground-state cooling and strong optomechanical coupling[J]. Physical Review A, 2015, 91(3):033818 DOI: 10.1103/PhysRevA.91.033818.
[20] [20] HUANG S, CHEN A. Cooling of a mechanical oscillator and normal mode splitting in optomechanical systems with coherent feedback[J]. Applied Sciences, 2019, 9(2076-3417):3402 DOI: 10.3390/app9163402.
[21] [21] LI Y, WANG Y J, SUN H X, et al. Normal-mode splitting in the optomechanical system with an optical parametric amplifier and coherent feedback[J]. 2022, arXiv: 2210.04197.
[22] [22] LAW C K. Effective Hamiltonian for the radiation in a cavity with a moving mirror and a time-varying dielectric medium[J]. Physical Review A, 1995, 49(1):433-437 DOI: 10.1103/PhysRevA.49.433.
[23] [23] LAW C K. Interaction between a moving mirror and radiation pressure: A Hamiltonian formulation[J]. Physical Review A, 1995, 51(3):2537-2541 DOI: 10.1103/PhysRevA.51.2537.
[24] [24] GARDINER C, ZOLLER P. Quantum Noise: a handbook of Markovian and non-Markovian quantum stochastic methods with applications to quantum optics [M]. Springer-Verlag, Berlin, 2004.
[25] [25] GIOVANNETTI V, VITALI D. Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion[J]. Physical Review A, 2001, 63(2):023812 DOI: 10.1103/PhysRevA.63.023812.
[26] [26] A. Hurwitz, in Selected Papers on Mathematical Trends in Control Theory[M]. Edited by R. Bellman and R. Kalaba Dover, New York, 1964.
[27] [27] DEJESUS E X, KAUFMAN C. Routh-Hurwitz criterion in the examination of eigenvalues of a system of nonlinear ordinary differential equations[J]. Physical Review A, 1987, 35(12):5288-5290 DOI:10.1103/PhysRevA.35.5288.
[28] [28] HUANG S, AGARWAL G S. Enhancement of cavity cooling of a micromechanical mirror using parametric interactions[J]. Physical Review A, 2009, 79(1):013821 DOI: 10.1103/PhysRevA.79.013821.
[29] [29] GUPTA S D, AGARWAL G S. Strong coupling cavity physics in microspheres with whispering gallery modes[J]. Optics Communications, 1995, 115(5-6):597-605. DOI: org/10.1016/0030-4018(94)00561-8.
Get Citation
Copy Citation Text
LI Yue, WANG Yi-jian, SUN Heng-xin, LIU Kui, GAO Jiang-rui. Impact of Coherent Feedback Phase on Normal-Mode Splitting in an Optomechanical System[J]. Journal of Quantum Optics, 2023, 29(2): 20502
Category:
Received: Oct. 21, 2022
Accepted: --
Published Online: Mar. 15, 2024
The Author Email: SUN Heng-xin (hxsun@sxu.edu.cn)