Acta Optica Sinica, Volume. 44, Issue 1, 0106003(2024)
Review on Digital Signal Processing Techniques in Distributed Brillouin Fiber Sensing Systems
[1] Xu J L, Dong Y K, Zhang Z H et al. Full scale strain monitoring of a suspension bridge using high performance distributed fiber optic sensors[J]. Measurement Science and Technology, 27, 124017(2016).
[2] Wang C, Liu Q W, Chen D et al. Monitoring pipeline leakage using fiber-optic distributed acoustic sensor[J]. Acta Optica Sinica, 39, 1006005(2019).
[3] Yuan L B, Tong W J, Jiang S et al. Road map of fiber optic sensor technology in China[J]. Acta Optica Sinica, 42, 0100001(2022).
[4] Bao X Y, Chen L. Recent progress in distributed fiber optic sensors[J]. Sensors, 12, 8601-8639(2012).
[5] Mizuno Y, Zou W W, He Z Y et al. Proposal of Brillouin optical correlation-domain reflectometry (BOCDR)[J]. Optics Express, 16, 12148-12153(2008).
[6] Minardo A, Bernini R, Ruiz-Lombera R et al. Proposal of Brillouin optical frequency-domain reflectometry (BOFDR)[J]. Optics Express, 24, 29994-30001(2016).
[7] Zhang L, Wang Z N, Li J et al. Ultra-long dual-sideband BOTDA with balanced detection[J]. Optics & Laser Technology, 68, 206-210(2015).
[8] Sun X Z, Yang Z S, Hong X B et al. Ultra-long Brillouin optical time-domain analyzer based on distortion compensating pulse and hybrid lumped-distributed amplification[J]. APL Photonics, 7, 126107(2022).
[9] Dominguez-Lopez A, Soto M A, Martin-Lopez S et al. Resolving 1 million sensing points in an optimized differential time-domain Brillouin sensor[J]. Optics Letters, 42, 1903-1906(2017).
[10] Zhou D W, Ba D X, Wang B Z et al. Millimeter-level recognition capability of BOTDA based on a transient pump pulse and algorithm enhancement[J]. Optics Letters, 46, 3440-3443(2021).
[11] Zou P, Zhao Y H, Hu F C et al. Research status of machine learning based signal processing in visible light communication[J]. Laser & Optoelectronics Progress, 57, 010001(2020).
[12] Farahani M A, Wylie M T V, Castillo-Guerra E et al. Reduction in the number of averages required in BOTDA sensors using wavelet denoising techniques[J]. Journal of Lightwave Technology, 30, 1134-1142(2012).
[13] Farahani M A, Castillo-Guerra E, Colpitts B G. Acceleration of measurements in BOTDA sensors using adaptive linear prediction[J]. IEEE Sensors Journal, 13, 263-272(2013).
[14] Qian X Y, Jia X H, Wang Z N et al. Noise level estimation of BOTDA for optimal non-local means denoising[J]. Applied Optics, 56, 4727-4734(2017).
[15] Zheng H, Zhang J D, Wu H T et al. Single shot OCC-BOTDA based on polarization diversity and image denoising[J]. Optics and Lasers in Engineering, 137, 106368(2021).
[16] Li J L, Zeng K Y, Yang G J et al. High-fidelity denoising for differential pulse-width pair Brillouin optical time domain analyzer based on block-matching and 3D filtering[J]. Optics Communications, 525, 128866(2022).
[17] Li J L, Zhao C, Zeng K Y et al. Signal-to-noise ratio enhancement using block-matching and 3D filtering for both Brillouin gain and phase spectra in sweep-free Brillouin optical time-domain analyzer[J]. Optical Engineering, 61, 107101(2022).
[18] Soto M A, Ramírez J A, Thévenaz L. Intensifying the response of distributed optical fibre sensors using 2D and 3D image restoration[J]. Nature Communications, 7, 10870(2016).
[19] Wu H, Wang L, Zhao Z Y et al. Brillouin optical time domain analyzer sensors assisted by advanced image denoising techniques[J]. Optics Express, 26, 5126-5139(2018).
[20] Wang B W, Wang L, Yu C Y et al. Long-distance BOTDA sensing systems using video-BM3D denoising for both static and slowly varying environment[J]. Optics Express, 27, 36100-36113(2019).
[21] Soto M A, Ramírez J A, Thévenaz L. Optimizing image denoising for long-range Brillouin distributed fiber sensing[J]. Journal of Lightwave Technology, 36, 1168-1177(2017).
[22] Yang G J, Wang B W, Wang L et al. Optimization of 2D-BM3D denoising for long-range Brillouin optical time domain analysis[C](2021).
[23] Luo K, Wang B W, Guo N et al. Enhancing SNR by anisotropic diffusion for Brillouin distributed optical fiber sensors[J]. Journal of Lightwave Technology, 38, 5844-5852(2020).
[24] Zhang P X, Wang B W, Yang Y N et al. SNR enhancement for Brillouin distributed optical fiber sensors based on asynchronous control[J]. Optics Express, 30, 4231-4248(2022).
[25] Wang Y J, Yao H P, Wang J J et al. Distributed optical fiber sensing system for large infrastructure temperature monitoring[J]. IEEE Internet of Things Journal, 9, 3333-3345(2022).
[26] Zhang Y Y, Lu Y G, Zhang Z L et al. Noise reduction by Brillouin spectrum reassembly in Brillouin optical time domain sensors[J]. Optics and Lasers in Engineering, 125, 105865(2020).
[27] Zhang Y Y, Lu Y G, Chen L et al. Segmented noise reduction based on Brillouin-spectrum-partition in Brillouin optical time domain sensors[J]. IEEE Sensors Journal, 21, 22792-22802(2021).
[28] Yuan P, Lu Y G, Zhang Y Y et al. Noise reduction in a Brillouin optical time-domain sensor by a frequency-domain feature filter[J]. Applied Optics, 61, 2667-2674(2022).
[29] Abbasnezhad M, Alizadeh B. FPGA-based implementation of an artificial neural network for measurement acceleration in BOTDA sensors[J]. IEEE Transactions on Instrumentation and Measurement, 68, 4326-4334(2019).
[30] Wang B W, Guo N, Wang L et al. Denoising and robust temperature extraction for BOTDA systems based on denoising autoencoder and DNN[C], WF29(2018).
[31] Wang B W, Guo N, Wang L et al. Robust and fast temperature extraction for Brillouin optical time-domain analyzer by using denoising autoencoder-based deep neural networks[J]. IEEE Sensors Journal, 20, 3614-3620(2020).
[32] Wu H, Wan Y Y, Tang M et al. Real-time denoising of Brillouin optical time domain analyzer with high data fidelity using convolutional neural networks[J]. Journal of Lightwave Technology, 37, 2648-2653(2019).
[33] Li B, Jiang N J, Han X L. Denoising of Brillouin gain spectrum images for improved dynamic measurements of BOTDR[J]. IEEE Photonics Journal, 15, 6801808(2023).
[34] Liu J Y, Wang T, Zhang Q et al. Rapid noise removal based dual adversarial network for the Brillouin optical time domain analyzer[J]. Optics Express, 29, 34002-34014(2021).
[35] Zheng H, Yan Y X, Wang Y Y et al. Deep learning enhanced long-range fast BOTDA for vibration measurement[J]. Journal of Lightwave Technology, 40, 262-268(2022).
[36] Yang G J, Zeng K Y, Wang L et al. Integrated denoising and extraction of both temperature and strain based on a single CNN framework for a BOTDA sensing system[J]. Optics Express, 30, 34453-34467(2022).
[37] Yang Y N, Dong Y, Yu K L. SNR improvement based on attention-DNet for Brillouin distributed optical fiber sensors[C](2022).
[38] Wang Q L, Bai Q, Liu Y T et al. SNR enhancement for BOTDR with spatial-adaptive image denoising method[J]. Journal of Lightwave Technology, 41, 2562-2571(2023).
[39] Soto M A, Thévenaz L. Modeling and evaluating the performance of Brillouin distributed optical fiber sensors[J]. Optics Express, 21, 31347-31366(2013).
[40] Bao X, Brown A, DeMerchant M et al. Characterization of the Brillouin-loss spectrum of single-mode fibers by use of very short (<10-ns) pulses[J]. Optics Letters, 24, 510-512(1999).
[41] Xiao S H, Li L. New fitting method for Brillouin-based scattering spectrum of fibre-optic distributed sensing systems[J]. Optical Technique, 35, 897-900, 904(2009).
[42] Farahani M A, Castillo-Guerra E, Colpitts B G. A detailed evaluation of the correlation-based method used for estimation of the Brillouin frequency shift in BOTDA sensors[J]. IEEE Sensors Journal, 13, 4589-4598(2013).
[43] Zhang X Y, Hong X B, Sun X Z et al. Fast estimation of Brillouin frequency shift in the BOTDA sensors[C], WF18(2018).
[44] Wang F, Zhan W W, Lu Y G et al. Determining the change of Brillouin frequency shift by using the similarity matching method[J]. Journal of Lightwave Technology, 33, 4101-4108(2015).
[45] Li J Q, Zhou W N, Zhang Y D et al. A novel method of the Brillouin gain spectrum recognition using enhanced sobel operators based on BOTDA system[J]. IEEE Sensors Journal, 19, 4093-4097(2019).
[46] Liu S, Yang G J, Xu Z Y et al. Edge detection-assisted Brillouin optical time-domain analyzer for ultrafast sensing of abnormal temperature event[J]. IEEE Sensors Journal, 22, 3211-3218(2022).
[47] Wu H, Wang L, Guo N et al. Brillouin optical time-domain analyzer assisted by support vector machine for ultrafast temperature extraction[J]. Journal of Lightwave Technology, 35, 4159-4167(2017).
[48] Wu H, Wang L, Guo N et al. Support vector machine assisted BOTDA utilizing combined Brillouin gain and phase information for enhanced sensing accuracy[J]. Optics Express, 25, 31210-31220(2017).
[49] Wu H, Wang L, Zhao Z Y et al. Support vector machine based differential pulse-width pair Brillouin optical time domain analyzer[J]. IEEE Photonics Journal, 10, 6802911(2018).
[50] Wu H, Wang H D, Shu C et al. BOTDA fiber sensor system based on FPGA accelerated support vector regression[J]. IEEE Transactions on Instrumentation and Measurement, 69, 3826-3837(2020).
[51] Zhu H N, Yu L, Zhang Y F et al. Optimized support vector machine assisted BOTDA for temperature extraction with accuracy enhancement[J]. IEEE Photonics Journal, 12, 6800214(2019).
[52] Nordin N D, Zan M S D, Abdullah F. Generalized linear model for enhancing the temperature measurement performance in Brillouin optical time domain analysis fiber sensor[J]. Optical Fiber Technology, 58, 102298(2020).
[53] Nordin N D, Abdullah F, Zan M S D et al. Improving prediction accuracy and extraction precision of frequency shift from low-SNR Brillouin gain spectra in distributed structural health monitoring[J]. Sensors, 22, 2677(2022).
[54] Zheng H, Sun S J, Qin Y L et al. Extraction of Brillouin frequency shift from Brillouin gain spectrum in Brillouin distributed fiber sensors using K nearest neighbor algorithm[J]. Optical Fiber Technology, 71, 102903(2022).
[55] Zheng H, Xiao F, Sun S J et al. Brillouin frequency shift extraction based on AdaBoost algorithm[J]. Sensors, 22, 3354(2022).
[56] Azad A K, Khan F N, Alarashi W H et al. Temperature extraction in Brillouin optical time-domain analysis sensors using principal component analysis based pattern recognition[J]. Optics Express, 25, 16534-16549(2017).
[57] Wang B Z, Fan B H, Zhou D W et al. High-performance optical chirp chain BOTDA by using a pattern recognition algorithm and the differential pulse-width pair technique[J]. Photonics Research, 7, 652-658(2019).
[58] Zhang J D, Zheng H, Wu H T et al. Vector optical-chirp-chain Brillouin optical time-domain analyzer based on complex principal component analysis[J]. Optics Express, 28, 28831-28842(2020).
[59] Tan H X, Wu H, Shen L et al. Sparse representation of Brillouin spectrum using dictionary learning[J]. Optics Express, 28, 18160-18171(2020).
[60] Zhang L, Shi B, Zhu H H et al. A machine learning method for inclinometer lateral deflection calculation based on distributed strain sensing technology[J]. Bulletin of Engineering Geology and the Environment, 79, 3383-3401(2020).
[61] Song Q S, Zhang C, Tang G W et al. Deep learning method for detection of structural microcracks by Brillouin scattering based distributed optical fiber sensors[J]. Smart Materials and Structures, 29, 075008(2020).
[62] Song Q S, Yan G P, Tang G W et al. Robust principal component analysis and support vector machine for detection of microcracks with distributed optical fiber sensors[J]. Mechanical Systems and Signal Processing, 146, 107019(2021).
[63] Azad A K, Wang L, Guo N et al. Signal processing using artificial neural network for BOTDA sensor system[J]. Optics Express, 24, 6769-6782(2016).
[64] Liang Y X, Jiang J L, Chen Y X et al. Optimized feedforward neural network training for efficient Brillouin frequency shift retrieval in fiber[J]. IEEE Access, 7, 68034-68042(2019).
[65] Li Y Q, Wang J J. Optimized neural network for temperature extraction from Brillouin scattering spectra[J]. Optical Fiber Technology, 58, 102314(2020).
[66] Madaschi A, Morosi J, Brunero M et al. Enhanced neural network implementation for temperature profile extraction in distributed Brillouin scattering-based sensors[J]. IEEE Sensors Journal, 22, 6871-6878(2022).
[67] Xiao F, Lv M X, Li X W. Fast measurement of Brillouin frequency shift in optical fiber based on a novel feedforward neural network[J]. Photonics, 8, 474(2021).
[68] Huang Q, Shi H T, Huang C K et al. Improvement of response speed and precision of distributed Brillouin optical fiber sensors using neural networks[J]. Optics & Laser Technology, 167, 109705(2023).
[69] Lü T, Ye X K, Zheng Y et al. Error estimation of BFS extraction with optimized neural network & frequency scanning range[J]. Journal of Lightwave Technology, 39, 5149-5155(2021).
[70] Lü T, Ye X K, Huang K et al. Cascaded feedforward neural network based simultaneously fast and precise multi-characteristics extraction and BFS error estimation[J]. Journal of Lightwave Technology, 40, 7937-7945(2022).
[71] Zhang Y F, Yu L, Hu Z L et al. Ultrafast and accurate temperature extraction via kernel extreme learning machine for BOTDA sensors[J]. Journal of Lightwave Technology, 39, 1537-1543(2021).
[72] Lu C Y, Liang Y X, Jia X H et al. Artificial neural network for accurate retrieval of fiber Brillouin frequency shift with non-local effects[J]. IEEE Sensors Journal, 20, 8559-8569(2020).
[73] Qian Y H, Yang G J, Zeng K Y et al. Accurate extraction of Brillouin frequency shift using single deep neural network in BOTDA sensing system with non-local effect[C], W2B.20(2023).
[74] Wang B W, Guo N, Khan F N et al. Extraction of temperature distribution using deep neural networks for BOTDA sensing system[C](2017).
[75] Chang Y Q, Wu H, Zhao C et al. Distributed Brillouin frequency shift extraction via a convolutional neural network[J]. Photonics Research, 8, 690-697(2020).
[76] Chen B, Su L H, Zhang Z Y et al. Wavelet convolutional neural network for robust and fast temperature measurements in Brillouin optical time domain reflectometry[J]. Optics Express, 30, 13942-13958(2022).
[77] Ruiz-Lombera R, Fuentes A, Rodriguez-Cobo L et al. Simultaneous temperature and strain discrimination in a conventional BOTDA via artificial neural networks[J]. Journal of Lightwave Technology, 36, 2114-2121(2018).
[78] Wang B W, Wang L, Guo N et al. Deep neural networks assisted BOTDA for simultaneous temperature and strain measurement with enhanced accuracy[J]. Optics Express, 27, 2530-2543(2019).
[79] Wang M H, Sui Y, Zhou W N et al. Sweep frequency method with variance weight probability for temperature extraction of the Brillouin gain spectrum based on an artificial neural network[J]. Optics Express, 29, 28994-29006(2021).
[80] Wang M H, Sui Y, Zhou W N et al. AIoT enabled resampling filter for temperature extraction of the Brillouin gain spectrum[J]. Optics Express, 30, 36110-36121(2022).
[81] Qi D, Li J Y, Guan X et al. Dynamic polarization-insensitive BOTDA in direct-detection OFDM with CNN-based BFS extraction[J]. Optics Express, 30, 7725-7736(2022).
[82] Wang H N, Dong Y K. High-performance transient SBS-based microwave measurement using high-chirp-rate modulation and advanced algorithms[J]. Optics Letters, 48, 3291-3294(2023).
Get Citation
Copy Citation Text
Guijiang Yang, Yuhao Qian, Yiyi Zhou, Liang Wang, Ming Tang. Review on Digital Signal Processing Techniques in Distributed Brillouin Fiber Sensing Systems[J]. Acta Optica Sinica, 2024, 44(1): 0106003
Category: Fiber Optics and Optical Communications
Received: Aug. 14, 2023
Accepted: Oct. 7, 2023
Published Online: Jan. 12, 2024
The Author Email: Liang Wang (hustwl@hust.edu.cn)
CSTR:32393.14.AOS231398