Journal of the Chinese Ceramic Society, Volume. 53, Issue 7, 1822(2025)

First-Principles Calculations of Li2MgSO Oxysulfide as a Solid-State Electrolyte

ZHANG Yaming, CHEN Diancheng, and SUN Yang
Author Affiliations
  • School of Materials, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong, China
  • show less
    References(46)

    [1] [1] KIM K J, BALAISH M, WADAGUCHI M, et al. Solid-state Li–metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv Energy Mater, 2021, 11(1): 2002689.

    [2] [2] LARCHER D, TARASCON J M. Towards greener and more sustainable batteries for electrical energy storage[J]. Nat Chem, 2015, 7(1): 19–29.

    [3] [3] WANG C H, SUN X L. The promise of solid-state batteries for safe and reliable energy storage[J]. Engineering, 2023, 21: 32–35.

    [4] [4] JANEK J, ZEIER W G. A solid future for battery development[J]. Nat Energy, 2016, 1(9): 16141.

    [5] [5] KAMAYA N, HOMMA K, YAMAKAWA Y, et al. A lithium superionic conductor[J]. Nat Mater, 2011, 10(9): 682–686.

    [6] [6] HUANG Y, LIU X, JIANG Y, et al. Synthesis of textured Li0.33La0.55TiO3 solid electrolytes by molten salt method[J]. Ceram Int, 2021, 47(8): 11654–11661.

    [7] [7] ZHU Y Z, HE X F, MO Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl Mater Interfaces, 2015, 7(42): 23685–23693.

    [8] [8] BERNSTEIN N, JOHANNES M D, HOANG K. Origin of the structural phase transition in Li7La3Zr2O12[J]. Phys Rev Lett, 2012, 109(20): 205702.

    [9] [9] ZHAO Q, STALIN S, ZHAO C Z, et al. Designing solid-state electrolytes for safe, energy-dense batteries[J]. Nat Rev Mater, 2020, 5: 229–252.

    [11] [11] CHEN W J, LI Y F, FENG D C, et al. Recent progress of theoretical research on inorganic solid state electrolytes for Li metal batteries[J]. J Power Sources, 2023, 561: 232720.

    [12] [12] WANG X L, XIAO R J, LI H, et al. Oxysulfide LiAlSO: A lithium superionic conductor from first principles[J]. Phys Rev Lett, 2017, 118(19): 195901.

    [13] [13] HE J G, YAO Z P, HEGDE V I, et al. Computational discovery of stable heteroanionic oxychalcogenides ABXO (A, B = metals; X = S, Se, and Te) and their potential applications[J]. Chem Mater, 2020, 32(19): 8229–8242.

    [14] [14] ZHANG J R, WANG X L, ADELEKE A A, et al. Oxysulfide Li2BeSO: A potential new material for solid electrolyte predicted from first principles[J]. J Alloys Compd, 2020, 818: 152844.

    [15] [15] MA Y M, JIAN L, WANG Y C. CALYPSO structure prediction method[J]. Chin Sci Bull, 2015, 60(27): 2580–2587.

    [16] [16] TONG Q C, LV J, GAO P Y, et al. The CALYPSO methodology for structure prediction[J]. Chin Phys B, 2019, 28(10): 106105.

    [17] [17] KRESSE G, FURTHMLLER J. Efficient iterative schemes forab initiototal-energy calculations using a plane-wave basis set[J]. Phys Rev B Condens Matter, 1996, 54(16): 11169–11186.

    [18] [18] KRESSE G, FURTHMLLER J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set[J]. Comput Mater Sci, 1996, 6(1): 15–50.

    [19] [19] BLCHL P E. Projector augmented-wave method[J]. Phys Rev B, 1994, 50(24): 17953–17979.

    [20] [20] PERDEW J P, YUE W. Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation[J]. Phys Rev B Condens Matter, 1986, 33(12): 8800–8802.

    [21] [21] PERDEW J P, BURKE K, ERNZERHOF M. Generalized gradient approximation made simple[J]. Phys Rev Lett, 1996, 77(18): 3865–3868.

    [22] [22] HEYD J, SCUSERIA G E, ERNZERHOF M. Hybrid functionals based on a screened coulomb potential[J]. J Chem Phys, 2003, 118(18): 8207–8215.

    [23] [23] GIANNOZZI P, DE G S, PAVONE P, et al. Ab initio calculation of phonon dispersions in semiconductors[J]. Phys Rev B Condens Matter, 1991, 43(9): 7231–7242.

    [24] [24] TOGO A. First-principles phonon calculations with phonopy and Phono3py[J]. J Phys Soc Jpn, 2023, 92(1): 012001.

    [25] [25] CHEN H M, WONG L L, ADAMS S. SoftBV–A software tool for screening the materials genome of inorganic fast ion conductors[J]. Acta Crystallogr B Struct Sci Cryst Eng Mater, 2019, 75(Pt 1): 18–33.

    [26] [26] WONG L L, PHUAH K C, DAI R Y, et al. Bond valence pathway analyzer: An automatic rapid screening tool for fast ion conductors within softBV[J]. Chem Mater, 2021, 33(2): 625–641.

    [27] [27] HENKELMAN G, UBERUAGA B P, JNSSON H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths[J]. 2000, 113(22): 9901–9904.

    [28] [28] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions[J]. Phys Rev A Gen Phys, 1985, 31(3): 1695–1697.

    [30] [30] HEYD J, SCUSERIA G E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional[J]. J Chem Phys, 2004, 121(3): 1187–1192.

    [31] [31] XIONG S, HE X F, HAN A J, et al. Computation-guided design of LiTaSiO5, a new lithium ionic conductor with sphene structure[J]. Adv Energy Mater, 2019, 9(22): 1803821.

    [32] [32] LIN Y Y, JUAREZ-YESCAS C, LAN K W, et al. Isolation of grain versus intergranular transport in Li1+xTixTa1–xSiO5 suggests concerted ion migration in a high-voltage stable electrolyte from high-throughput descriptors[J]. ACS Appl Energy Mater, 2023, 6(22): 11468–11480.

    [33] [33] WANG Z Q, WU M S, LIU G, et al. Elastic properties of new solid state electrolyte material Li10GeP2S12: A study from first-principles calculations[J]. Int J Electrochem Sci, 2014, 9(2): 562–568.

    [34] [34] MONROE C, NEWMAN J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces[J]. J Electrochem Soc, 2005, 152(2): A396.

    [35] [35] DENG Z, WANG Z B, CHU I H, et al. Elastic properties of alkali superionic conductor electrolytes from first principles calculations[J]. J Electrochem Soc, 2016, 163(2): A67–A74.

    [36] [36] PUGH S F. XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals[J]. Lond Edinb Dublin Philos Mag J Sci, 1954, 45(367): 823–843.

    [37] [37] JUN K, CHEN Y, WEI G, et al. Diffusion mechanisms of fast lithium-ion conductors[J]. Nat Rev Mater, 2024, 9: 887–905.

    [38] [38] MUY S, BACHMAN J C, GIORDANO L, et al. Tuning mobility and stability of lithium ion conductors based on lattice dynamics[J]. Energy Environ Sci, 2018, 11(4): 850–859.

    [39] [39] MUY S, SCHLEM R, SHAO-HORN Y, et al. Phonon–ion interactions: Designing ion mobility based on lattice dynamics[J]. Adv Energy Mater, 2021, 11(15): 2002787.

    [40] [40] GUAN C H, YANG Y, OUYANG R X, et al. Enhanced ionic conductivity of protonated antiperovskitesviatuning lattice and rotational dynamics[J]. J Mater Chem A, 2023, 11(12): 6157–6167.

    [41] [41] MANTHIRAM A, GOODENOUGH J B. Lithium insertion into Fe2(SO4)3 frameworks[J]. J Power Sources, 1989, 26(3/4): 403–408.

    [42] [42] ETOURNEAU J, PORTIER J, MNIL F. The role of the inductive effect in solid state chemistry: How the chemist can use it to modify both the structural and the physical properties of the materials[J]. J Alloys Compd, 1992, 188: 1–7.

    [43] [43] KRAUSKOPF T, CULVER S P, ZEIER W G. Bottleneck of diffusion and inductive effects in Li10Ge1–xSnxP2S12[J]. Chem Mater, 2018, 30(5): 1791–1798.

    [44] [44] CULVER S P, SQUIRES A G, MINAFRA N, et al. Evidence for a solid-electrolyte inductive effect in the superionic conductor Li10Ge1–xSnxP2S12[J]. J Am Chem Soc, 2020, 142(50): 21210–21219.

    [45] [45] PAREEK T, DWIVEDI S, SINGH B, et al. LiSnZr(PO4)3: NASICON-type solid electrolyte with excellent room temperature Li+ conductivity[J]. J Alloys Compd, 2019, 777: 602–611.

    [46] [46] MIZUNO F, HAYASHI A, TADANAGA K, et al. High lithium ion conducting glass-ceramics in the system Li2S–P2S5[J]. Solid State Ion, 2006, 177(26–32): 2721–2725.

    [47] [47] WANG Y, RICHARDS W D, ONG S P, et al. Design principles for solid-state lithium superionic conductors[J]. Nat Mater, 2015, 14(10): 1026–1031.

    [48] [48] WEBER D A, SENYSHYN A, WELDERT K S, et al.Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12[J]. Chem. Mater., 2016, 28(16):5905–5915.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Yaming, CHEN Diancheng, SUN Yang. First-Principles Calculations of Li2MgSO Oxysulfide as a Solid-State Electrolyte[J]. Journal of the Chinese Ceramic Society, 2025, 53(7): 1822

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Dec. 30, 2024

    Accepted: Aug. 12, 2025

    Published Online: Aug. 12, 2025

    The Author Email:

    DOI:10.14062/j.issn.0454-5648.20240835

    Topics