Chinese Journal of Lasers, Volume. 50, Issue 17, 1714015(2023)
Dynamic Modulation of Terahertz Resonance Modes by Embedded Vanadium Dioxide Metasurfaces
[1] Guerboukha H, Nallappan K, Skorobogatiy M. Toward real-time terahertz imaging[J]. Advances in Optics and Photonics, 10, 843-938(2018).
[2] Jornet J M, Knightly E W, Mittleman D M. Wireless communications sensing and security above 100 GHz[J]. Nature Communications, 14, 841(2023).
[3] Zhang C H, Liang L J, Ding L A et al. Label-free measurements on cell apoptosis using a terahertz metamaterial-based biosensor[J]. Applied Physics Letters, 108, 241105(2016).
[4] Nagatsuma T, Ducournau G, Renaud C C. Advances in terahertz communications accelerated by photonics[J]. Nature Photonics, 10, 371-379(2016).
[5] Hu J E, Bandyopadhyay S, Liu Y H et al. A review on metasurface: from principle to smart metadevices[J]. Frontiers in Physics, 8, 586087(2021).
[6] Ali A, Mitra A, Aïssa B. Metamaterials and metasurfaces: a review from the perspectives of materials, mechanisms and advanced metadevices[J]. Nanomaterials, 12, 1027(2022).
[7] He Q, Sun S L, Zhou L. Tunable/reconfigurable metasurfaces: physics and applications[J]. Research, 2019, 1849272(2019).
[8] Fan K B, Padilla W J. Dynamic electromagnetic metamaterials[J]. Materials Today, 18, 39-50(2015).
[9] Cong L Q. Active terahertz metadevices[J]. Chinese Journal of Lasers, 48, 1914003(2021).
[10] Fan K B, Averitt R D, Padilla W J. Active and tunable nanophotonic metamaterials[J]. Nanophotonics, 11, 3769-3803(2022).
[11] Miao Z Q, Wu Q, Li X et al. Widely tunable terahertz phase modulation with gate-controlled graphene metasurfaces[J]. Physical Review X, 5, 041027(2015).
[12] Shrekenhamer D, Chen W C, Padilla W J. Liquid crystal tunable metamaterial absorber[J]. Physical Review Letters, 110, 177403(2013).
[13] Chen H T, Padilla W J, Zide J M O et al. Active terahertz metamaterial devices[J]. Nature, 444, 597-600(2006).
[14] Jeong Y G, Bahk Y M, Kim D S. Dynamic terahertz plasmonics enabled by phase-change materials[J]. Advanced Optical Materials, 8, 1900548(2020).
[15] Zhu H F, Du L H, Li J A et al. Near-perfect terahertz wave amplitude modulation enabled by impedance matching in VO2 thin films[J]. Applied Physics Letters, 112, 081103(2018).
[16] Chen B W, Wu J B, Li W L et al. Programmable terahertz metamaterials with non-volatile memory[J]. Laser & Photonics Reviews, 16, 2100472(2022).
[17] Zhang C H, Zhou G C, Wu J B et al. Active control of terahertz waves using vanadium-dioxide-embedded metamaterials[J]. Physical Review Applied, 11, 054016(2019).
[18] Cui Q, Chen Z, Wang Y. Dynamic manipulation of terahertz wave phase based on vanadium dioxide metamaterials[J]. Chinese Journal of Lasers, 49, 0314001(2022).
[19] Huang C C, Zhang Y G, Liang L J et al. Narrow/broadband switchable graphene-vanadium dioxide composite structure terahertz wave absorber[J]. Acta Optica Sinica, 42, 1916001(2022).
[20] Zhang T, Yang S, Yu X Y. Tunable broadband terahertz perfect absorber design based on vanadium dioxide[J]. Laser & Optoelectronics Progress, 58, 2116002(2021).
[21] Hilton D J, Prasankumar R P, Fourmaux S et al. Enhanced photosusceptibility near tc for the light-induced insulator-to-metal phase transition in vanadium dioxide[J]. Physical Review Letters, 99, 226401(2007).
[22] Cocker T L, Titova L V, Fourmaux S et al. Phase diagram of the ultrafast photoinduced insulator-metal transition in vanadium dioxide[J]. Physical Review B, 85, 155120(2012).
Get Citation
Copy Citation Text
Lei Wang, Hua Li, Yongjie Wang, Caihong Zhang, Jingbo Wu, Kebin Fan, Biaobing Jin, Jian Chen, Peiheng Wu. Dynamic Modulation of Terahertz Resonance Modes by Embedded Vanadium Dioxide Metasurfaces[J]. Chinese Journal of Lasers, 2023, 50(17): 1714015
Category: terahertz technology
Received: Mar. 21, 2023
Accepted: May. 22, 2023
Published Online: Sep. 13, 2023
The Author Email: Zhang Caihong (chzhang@nju.edu.cn)