Chinese Journal of Lasers, Volume. 41, Issue 10, 1014001(2014)
An Empirical Mode Decomposition Algorithm Based on Cross Validation and Its Application to Lidar Return Signal De-Noising
[2] [2] He Tao, Hou Lujian, Lü Bo, et al.. Study of accuracy of lidar inversion PM2.5 concentration[J]. Chinese J Lasers, 2013, 40(1): 0113001.
[4] [4] Sun Jinqun. Laser Atmosphere Detect[M]. Beijing: Science Press, 1986. 263.
[5] [5] Wan Fu, Ma Rui, Cai Min. An adaptive processing of echo signals for pulse lidars[J]. Radar & Ecm, 2010, 30(1): 27-29.
[6] [6] Yin Shirong, Wang Weiran. Lidar signal denoising based on wavelet domain spatial fitering[C]. 2006 CIE International Conference on Rader, 2006. 1-3.
[7] [7] Sivakumar Venkataraman. De-noising LiDAR signal using wavelet technique[C]. SPIE, 2007, 6681: 66810O.
[8] [8] Huang N E, Shen Z, Long S R, et al.. The empirical mode decomposition and hilbert spectrum for nonlinear and non-stationary tile series analysis[J]. Proc Roy Soc A, 1998, 454(1971): 903-995.
[9] [9] Clark R M, Thompson R. Objective methods for smoothing paleomagnetic data[J]. Geophys J Roy Astron Soc, 1978, 52(2): 205-213.
[10] [10] Zhong Ping, Ding Xiaoli, Zheng Dawei. Study of GPS multipath effects with method of CVVF[J]. Acta geodastica et Cartographica Sinica, 2005, 34(2): 161-167.
[11] [11] Zheng Dawei, Zhong Ping, Ding Xiaoli, et al.. Filtering GPS time-series using a Vondrak filter and cross-validation[J]. J Geodesy, 2005, 79(6-7): 363-369.
[12] [12] Huang Wenqing, Dai Yuxing, Li Jiasheng. Adaptive wavelet denoising based on cross-validation[J]. Journal of Hunan University (Natural Sciences), 2008, 35(11): 40-43.
[14] [14] Li Yuesheng, Qi Dongxu. Methods of Spline Function[M]. Beijing: Science Press, 1979.
[15] [15] Rllng G, Flandr N P, Goncalves P. On empirical mode decomposition and its algorithms[C]. IEEE EURASIP Workshop on Nonlinear Signal and Image Processing, 2003. 9-11.
[16] [16] Zhong Ping, Ding Xiaoli, Zheng Dawei, et al.. A adaptive wavelet transform based on cross-validation and its application to mitigate GPS multipath effects[J]. Acta Geodastica et Cartographica Sinica, 2007, 36(3): 279-285.
[17] [17] Luo Feixue, Dai Wujiao, Wu Xixiu. EMD filtering based on cross-validation and its application in GPS mutipath[J]. Journal of Hunan University (Natural Sciences), 2012, 37(4): 450-453.
[18] [18] Tang Baoping, Liu Wenyi, Jiang Yonghua. Parameter optimized Morlet de-noising method based on cross validation method[J]. Journal of Chongqing University, 2010, 33(1): 1-6.
[19] [19] David L Donoho, Iain M Johnstone. Ideal spatial adaptation by wavelet shrinkage[J]. Biometrika, 1994, 81(3): 425-455.
[21] [21] Y Kopsinis, S McLaughlin. Development of EMD-based denoising methods inspired by wavelet thresholding[J]. IEEE Trans Signal Process, 2009, 57(4): 1351-1362.
[22] [22] W Gong, J Li, F Mao, et al.. Comparison of simultaneous signals obtained from a dual-field-of-view lidar and its application to noise reduction based on empirical mode decomposition[J]. Chin Opt Lett, 2011, 9(5): 050101.
[23] [23] K R Leavor, M P McCormick, N Boyouk, et al.. Noise reduction in Lidar signals using interval-thresholded empirical mode decomposition[C]. 8th Annual NOAA-CREST Symposium, Steinman Hall Auditorium, 2013.
Get Citation
Copy Citation Text
Wang Huanxue, Liu Jianguo, Zhang Tianshu, Dong Yunsheng. An Empirical Mode Decomposition Algorithm Based on Cross Validation and Its Application to Lidar Return Signal De-Noising[J]. Chinese Journal of Lasers, 2014, 41(10): 1014001
Category: Remote Sensing and Sensors
Received: Mar. 21, 2014
Accepted: --
Published Online: Aug. 12, 2014
The Author Email: Wang Huanxue (hxwang@aiofm.ac.cn)