Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237005(2025)

RA-CRPN: Method for Detecting Small Distant Objects in Road Vehicle Vision

Xiaowei Xu, Jianyu Li, Qinghua Qi, and Mingxing Deng*
Author Affiliations
  • School of Automobile and Traffic Engineering, Wuhan University of Science and Technology, Wuhan 430065, Hubei , China
  • show less
    Figures & Tables(15)
    Overall structure of RA-CRPN
    RepLKNet structure diagram
    ODC module and component modules. (a) OD block; (b) ODC module
    ODConv structure diagram
    CA attention mechanism structure diagram
    RA-ResNet structure diagram
    Residual attention module and its constituent modules. (a) Residual attention module; (b) residual block; (c) mask branch; (d) feature fusion module
    Improved CRPN model and constituent modules. (a) Improved CRPN model diagram; (b) GAM attention mechanism diagram
    Visualization of detection for each target category by each model. (a) SODA-D schematic diagram; (b) realistic scene diagram; (c) target category diagram
    • Table 1. Comparison of detection indicators for various models

      View table

      Table 1. Comparison of detection indicators for various models

      MethodScheduleFPS /frame/sAP /%AP@50 /%AP@75 /%APes /%APrs /%APgs /%APn /%
      One-stage
      FCOS151232.823.849.720.07.119.631.141.2
      YOLOX-M75050.926.954.123.013.825.031.230.6
      YOLOv10-M85084.631.261.427.115.128.036.444.5
      Keypoint-based
      CornerNet302416.324.749.521.86.320.732.543.9
      RepPoints311218.727.855.824.810.323.735.345.3
      Query-based
      Deformable-DETR325027.319.344.713.96.415.325.034.3
      Sparse R-CNN331227.624.450.420.59.020.530.239.6
      Two-stage
      Baseline9128.628.859.524.113.925.834.343.1
      Cascade RPN10128.229.256.626.112.625.735.644.3
      RFLA34129.929.960.425.113.426.835.644.2
      CFINet11128.730.860.926.914.827.636.344.6
      Proposed129.532.761.927.116.329.237.444.8
    • Table 2. Comparison of proposed generation methods and results

      View table

      Table 2. Comparison of proposed generation methods and results

      Proposal methodAR /%ARes /%ARrs /%ARgs /%ARn /%
      RPN41.324.138.347.257.2
      RPN-0.541.324.238.547.354.3
      GA-RPN442.224.139.348.856.3
      Cascade RPN41.922.828.348.757.1
      CRPN42.724.638.849.056.8
      Improved CRPN42.925.139.049.056.9
    • Table 3. Results of ablation experiment table

      View table

      Table 3. Results of ablation experiment table

      NetworkParameters /106FLOPs /GbitAP /%APes /%APrs /%APgs /%
      BaselineRO-ResNetRA-ResNetImproved CRPN
      44.5198.429.013.625.834.1
      50.2213.330.714.827.636.4
      45.5200.630.814.827.636.5
      54.3243.131.314.927.836.4
      51.2215.532.315.728.737.1
      60.0258.031.515.128.136.6
      55.3245.331.415.328.136.7
      61.0260.232.716.329.237.4
    • Table 4. Ablation experiments of ODC under different modules and algorithms unit: percentage points

      View table

      Table 4. Ablation experiments of ODC under different modules and algorithms unit: percentage points

      ModuleDifference without ODCMethodDifference without ODC
      APAPesAPrsAPgsAPAPesAPrsAPgs
      RO-ResNet0.70.81.11.2YOLOv10-M1.51.21.31.3
      RA-ResNet0.70.91.21.1RepPoints1.21.21.41.5
      ODC-FPN0.91.01.21.2Sparse R-CNN1.31.31.51.4
      CFINet2.31.81.92.1
    • Table 5. Influence of hyperparameters α3 on the simulation of FI branch characteristics

      View table

      Table 5. Influence of hyperparameters α3 on the simulation of FI branch characteristics

      α3AP /%APes /%APrs /%APgs /%
      0.2531.315.227.936.5
      0.5031.715.328.236.8
      0.7531.114.728.036.5
    • Table 6. Detection results of each model for each target category in custom dataset

      View table

      Table 6. Detection results of each model for each target category in custom dataset

      ParameterModelFaster R-CNNCascade RPNRFLACFInetRA-CRPN
      AP@50 /%People70.264.373.574.875.2
      Rider43.240.447.347.648.5
      Bicycle54.650.360.161.963.4
      Motor50.349.655.155.256.3
      Vehicle63.460.167.668.269.1
      Traffic-light53.850.256.256.958.1
      Traffic-sign60.559.164.264.366.5
      mAP@50 /%56.653.460.661.662.4
    Tools

    Get Citation

    Copy Citation Text

    Xiaowei Xu, Jianyu Li, Qinghua Qi, Mingxing Deng. RA-CRPN: Method for Detecting Small Distant Objects in Road Vehicle Vision[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Nov. 15, 2024

    Accepted: Dec. 12, 2024

    Published Online: Jun. 12, 2025

    The Author Email: Mingxing Deng (dengmingxing@wust.edu.cn)

    DOI:10.3788/LOP242269

    CSTR:32186.14.LOP242269

    Topics