Opto-Electronic Advances, Volume. 8, Issue 2, 240109(2025)
Smart reconfigurable metadevices made of shape memory alloy metamaterials
[1] O Hess, JB Pendry, SA Maier et al. Active nanoplasmonic metamaterials. Nat Mater, 11, 573-584(2012).
[2] M Kadic, GW Milton, Hecke M van et al. 3D metamaterials. Nat Rev Phys, 1, 198-210(2019).
[3] SS Kruk, ZJ Wong, E Pshenay-Severin et al. Magnetic hyperbolic optical metamaterials. Nat Commun, 7, 11329(2016).
[4] N Liu, HC Guo, LW Fu et al. Three-dimensional photonic metamaterials at optical frequencies. Nat Mater, 7, 31-37(2008).
[5] RA Shelby, DR Smith, S Schultz. Experimental verification of a negative index of refraction. Science, 292, 77-79(2001).
[6] NI Zheludev, YS Kivshar. From metamaterials to metadevices. Nat Mater, 11, 917-924(2012).
[7] CM Soukoulis, M Wegener. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics, 5, 523-530(2011).
[8] FB Yang, ZR Zhang, LJ Xu et al. Controlling mass and energy diffusion with metamaterials. Rev Mod Phys, 96, 015002(2024).
[9] A Arbabi, E Arbabi, Y Horie et al. Planar metasurface retroreflector. Nat Photonics, 11, 415-420(2017).
[10] GY Lee, JY Hong, SH Hwang et al. Metasurface eyepiece for augmented reality. Nat Commun, 9, 4562(2018).
[11] GB Wu, JY Dai, KM Shum et al. A universal metasurface antenna to manipulate all fundamental characteristics of electromagnetic waves. Nat Commun, 14, 5155(2023).
[12] J Qin, SB Jiang, ZS Wang et al. Metasurface micro/nano-optical sensors: principles and applications. ACS Nano, 16, 11598-11618(2022).
[13] YL Wang, C Zhao, JJ Wang et al. Wearable plasmonic-metasurface sensor for noninvasive and universal molecular fingerprint detection on biointerfaces. Sci Adv, 7, eabe4553(2021).
[14] DM Lin, PY Fan, E Hasman et al. Dielectric gradient metasurface optical elements. Science, 345, 298-302(2014).
[15] FL Wang, SQ Zhao, YZ Wen et al. High efficiency visible achromatic metalens design via deep learning. Adv Opt Mater, 11, 2300394(2023).
[16] Q Wang, XQ Zhang, YH Xu et al. A broadband metasurface-based terahertz flat-lens array. Adv Opt Mater, 3, 779-785(2015).
[17] AA High, RC Devlin, A Dibos et al. Visible-frequency hyperbolic metasurface. Nature, 522, 192-196(2015).
[18] GX Zheng, H Mühlenbernd, M Kenney et al. Metasurface holograms reaching 80% efficiency. Nat Nanotechnol, 10, 308-312(2015).
[19] HT Chen, WJ Padilla, MJ Cich et al. A metamaterial solid-state terahertz phase modulator. Nat Photonics, 3, 148-151(2009).
[20] L Kang, YH Cui, SF Lan et al. Electrifying photonic metamaterials for tunable nonlinear optics. Nat Commun, 5, 4680(2014).
[21] CP Ma, S Wu, QJ Ze et al. Magnetic multimaterial printing for multimodal shape transformation with tunable properties and shiftable mechanical behaviors. ACS Appl MaterInterfaces, 13, 12639-12648(2021).
[22] SM Montgomery, S Wu, X Kuang et al. Magneto-mechanical metamaterials with widely tunable mechanical properties and acoustic bandgaps. Adv Funct Mater, 31, 2005319(2021).
[23] D Shrekenhamer, WC Chen, WJ Padilla. Liquid crystal tunable metamaterial absorber. Phys Rev Lett, 110, 177403(2013).
[24] MA Kats, R Blanchard, P Genevet et al. Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett, 38, 368-370(2013).
[25] W Lewandowski, M Fruhnert, J Mieczkowski et al. Dynamically self-assembled silver nanoparticles as a thermally tunable metamaterial. Nat Commun, 6, 6590(2015).
[26] H Tao, AC Strikwerda, K Fan et al. Reconfigurable terahertz metamaterials. Phys Rev Lett, 103, 147401(2009).
[27] A Degiron, JJ Mock, DR Smith. Modulating and tuning the response of metamaterials at the unit cell level. Opt Express, 15, 1115-1127(2007).
[28] T Driscoll, HT Kim, BG Chae et al. Memory metamaterials. Science, 325, 1518-1521(2009).
[29] JY Ou, E Plum, L Jiang et al. Reconfigurable photonic metamaterials. Nano Lett, 11, 2142-2144(2011).
[30] WH Wang, YK Srivastava, M Gupta et al. Photoswitchable anapole metasurfaces. Adv Opt Mater, 10, 2102284(2022).
[31] WJ Buehler, JV Gilfrich, RC Wiley. Effect of low‐temperature phase changes on the mechanical properties of alloys near composition TiNi. J Appl Phys, 34, 1475-1477(1963).
[32] A Ölander. An electrochemical investigation of solid cadmium-gold alloys. J Am Chem Soc, 54, 3819-3833(1932).
[33] C Chluba, WW Ge, Miranda R Lima de et al. Ultralow-fatigue shape memory alloy films. Science, 348, 1004-1007(2015).
[34] SM Ueland, Y Chen, CA Schuh. Oligocrystalline shape memory alloys. Adv Funct Mater, 22, 2094-2099(2012).
[35] K Baskourelos, O Tsilipakos, T Stefański et al. Topological extraordinary optical transmission. Phys Rev Res, 4, L032011(2022).
[36] AG Brolo. Plasmonics for future biosensors. Nat Photonics, 6, 709-713(2012).
[37] HA Bethe. Theory of diffraction by small holes. Phys Rev, 66, 163-182(1944).
[38] TW Ebbesen, HJ Lezec, HF Ghaemi et al. Extraordinary optical transmission through sub-wavelength hole arrays. Nature, 391, 667-669(1998).
[39] HJ Lezec, T Thio. Diffracted evanescent wave model for enhanced and suppressed optical transmission through subwavelength hole arrays. Opt Express, 12, 3629-3651(2004).
[40] HT Liu, P Lalanne. Microscopic theory of the extraordinary optical transmission. Nature, 452, 728-731(2008).
[41] L Martín-Moreno, FJ García-Vidal, HJ Lezec et al. Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett, 86, 1114-1117(2001).
[42] JB Pendry, L Martín-Moreno, FJ Garcia-Vidal. Mimicking surface plasmons with structured surfaces. Science, 305, 847-848(2004).
[43] K Aydin, AO Cakmak, L Sahin et al. Split-ring-resonator-coupled enhanced transmission through a single subwavelength aperture. Phys Rev Lett, 102, 013904(2009).
[44] WC Chen, NI Landy, K Kempa et al. A subwavelength extraordinary-optical-transmission channel in babinet metamaterials. Adv Opt Mater, 1, 221-226(2013).
[45] M Navarro-Cía, M Beruete, I Campillo et al. Enhanced lens by ε and μ near-zero metamaterial boosted by extraordinary optical transmission. Phys Rev B, 83, 115112(2011).
[46] DR Smith, WJ Padilla, DC Vier et al. Composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett, 84, 4184-4187(2000).
[47] YM Yang, II Kravchenko, DP Briggs et al. All-dielectric metasurface analogue of electromagnetically induced transparency. Nat Commun, 5, 5753(2014).
[48] SK Wu, HC Lin, TY Lin. Electrical resistivity of Ti–Ni binary and Ti–Ni–X (X= Fe, Cu) ternary shape memory alloys. Mater Sci Eng A, 438–440, 536-539(2006).
[49] VA Fedotov, M Rose, SL Prosvirnin et al. Sharp trapped-mode resonances in planar metamaterials with a broken structural symmetry. Phys Rev Lett, 99, 147401(2007).
[50] WC Li, Y Wang, T Chen et al. Algorithmic encoding of adaptive responses in temperature-sensing multimaterial architectures. Sci Adv, 9, eadk0620(2023).
[51] QH Wang, BT Gao, M Raglione et al. Design, fabrication, and modulation of THz bandpass metamaterials. Laser Photonics Rev, 13, 1900071(2019).
[52] B Wu, W Jiang, JQ Jiang et al. Wave manipulation in intelligent metamaterials: recent progress and prospects. Adv Funct Mater, 34, 2316745(2024).
[53] CX Chen, K Kaj, XG Zhao et al. On-demand terahertz surface wave generation with microelectromechanical-system-based metasurface. Optica, 9, 17-25(2022).
[54] LQ Cong, P Pitchappa, C Lee et al. Active phase transition via loss engineering in a terahertz MEMS metamaterial. Adv Mater, 29, 1700733(2017).
Get Citation
Copy Citation Text
Shiqiang Zhao, Yuancheng Fan, Ruisheng Yang, Zhehao Ye, Fuli Zhang, Chen Wang, Weijia Luo, Yongzheng Wen, Ji Zhou. Smart reconfigurable metadevices made of shape memory alloy metamaterials[J]. Opto-Electronic Advances, 2025, 8(2): 240109
Category: Research Articles
Received: May. 10, 2024
Accepted: Aug. 28, 2024
Published Online: May. 12, 2025
The Author Email: Yuancheng Fan (YCFan), Fuli Zhang (FLZhang), Yongzheng Wen (YZWen), Ji Zhou (JZhou)