Laser & Optoelectronics Progress, Volume. 62, Issue 12, 1237001(2025)

Grasp Detection Algorithm Based on Deep Learning

Huiyan Han1,2,3、*, Wanning Li1,2,3, Jiaqi Wang1,2,3, Liqun Kuang1,2,3, and Xie Han1,2,3
Author Affiliations
  • 1School of Computer Science and Technology, North University of China, Taiyuan 030051, Shanxi , China
  • 2Shanxi Provincial Key Laboratory of Machine Vision and Virtual Reality, Taiyuan 030051, Shanxi , China
  • 3Shanxi Province's Vision Information Processing and Intelligent Robot Engineering Research Center, Taiyuan 030051, Shanxi , China
  • show less
    Figures & Tables(20)
    Five-dimensional grasp representation
    Overall structure of APNet
    AKConv structure
    Improved AKConv structure
    EMA structure
    Residual structure based on PyConv
    Visual comparison of grasping detection results of different algorithms on Cornell dataset
    Visual comparison of grasping detection results of different algorithms on Jacquard dataset
    Visualization of grasping detection results of APNet algorithm on multi-target dataset
    Visual comparisons of grasp detection results of GR-ConvNet and APNet algorithms under different occlusion conditions
    Visual comparisons of grasping detection results between GR-ConvNet and APNet algorithms under different lighting conditions
    Visual comparisons of grab-detection results between GR-ConvNet and APNet algorithms under different camera angles
    Robot arm grasping experimental platform
    Grasp process examples. (a) Initial state; (b) grasp execution; (c) put; (d) return to initial state
    • Table 1. Hyperparameter sensitivity analysis of APNet algorithm on Jacquard dataset

      View table

      Table 1. Hyperparameter sensitivity analysis of APNet algorithm on Jacquard dataset

      EpochLearning rateBatch sizeAccuracy /%
      1000.001895.8
      1000.0011695.8
      1000.010893.7
      1000.0101693.7
    • Table 2. Comparative results of different algorithms on Cornell dataset

      View table

      Table 2. Comparative results of different algorithms on Cornell dataset

      AlgorithmAccuracy /%Time /ms
      Image-wise splitObject-wise split
      GG-CNN1073.069.019
      GR-ConvNet1197.796.620
      CGNet1297.996.740
      Ref.[1398.997.124
      AAGDN1499.398.818
      SE-RetinaGrasp1597.095.823
      PTGNet1698.296.941
      APNet99.398.59
    • Table 3. Comparative results of different algorithms on Jacquard dataset

      View table

      Table 3. Comparative results of different algorithms on Jacquard dataset

      AlgorithmAccuracy /%Time /ms
      GG-CNN1084.320
      GR-ConvNet1194.620
      Ref.[1395.6
      AAGDN1496.2
      PTGNet1694.842
      APNet95.810
    • Table 4. Results of ablation experiments on the Cornell dataset

      View table

      Table 4. Results of ablation experiments on the Cornell dataset

      NetworkAccuracy /%Model size /MBTime /ms
      Image-wise splitObject-wise split
      Baseline network97.796.67.6020
      Baseline network+AKConv98.196.97.0316
      Baseline network+AKConv+Hardswish98.397.17.0314
      Baseline network+AKConv+Hardswish+EMA98.997.87.0314
      Baseline network+AKConv+Hardswish+EMA+PyConv99.398.55.989
    • Table 5. Results of ablation experiments on the Jacquard dataset

      View table

      Table 5. Results of ablation experiments on the Jacquard dataset

      NetworkAccuracy /%Model size /MBTime /ms
      Baseline network94.67.6020
      Baseline network+AKConv94.97.0417
      Baseline network+AKConv+Hardswish95.17.0414
      Baseline network+AKConv+Hardswish+EMA95.57.0414
      Baseline network+AKConv+Hardswish+EMA+PyConv95.86.0110
    • Table 6. Grasp experimental results for statistics

      View table

      Table 6. Grasp experimental results for statistics

      ObjectNumber of successful capturesGrasp success rate /%
      Pen4896
      Toy car4590
      Spoon4488
      Brick4998
      Mouse4692
      Ball4284
      Bowl4998
    Tools

    Get Citation

    Copy Citation Text

    Huiyan Han, Wanning Li, Jiaqi Wang, Liqun Kuang, Xie Han. Grasp Detection Algorithm Based on Deep Learning[J]. Laser & Optoelectronics Progress, 2025, 62(12): 1237001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Digital Image Processing

    Received: Oct. 28, 2024

    Accepted: Dec. 11, 2024

    Published Online: Jun. 16, 2025

    The Author Email: Huiyan Han (hhy980344@163.com)

    DOI:10.3788/LOP242181

    CSTR:32186.14.LOP242181

    Topics