Acta Laser Biology Sinica, Volume. 33, Issue 2, 143(2024)

Construction and Mechanism of tectb Inner Ear Gene Knockout Line in Zebrafish

LIU Ling, ZHU Junwei, ZENG Ting, XIE Binling, TAO Guifang, ZHU Xianyu, and XIE Huaping*
Author Affiliations
  • [in Chinese]
  • show less
    References(34)

    [1] [1] GOODYEAR R J, LU X, DEANS M R, et al. A tectorin-based matrix and planar cell polarity genes are required for normal col- lagen-fibril orientation in the developing tectorial membrane[J]. Development, 2017, 144(21): 3978-3989.

    [2] [2] RICHARDSON G P, RUSSELL I J, DUANCE V C, et al. Poly- peptide composition of the mammalian tectorial membrane[J]. Hearing Research, 1987, 25( 1): 45-60.

    [3] [3] THALMANN I. Collagen of accessory structures of organ of corti [J]. Connective Tissue Research, 1993, 29(3): 191-201.

    [4] [4] ZHENG J, MILLER K K, YANG T, et al. Carcinoembryonic anti- gen-related cell adhesion molecule 16 interacts with alpha-tectorin and is mutated in autosomal dominant hearing loss (DFNA4)[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 2011, 108( 10): 4218-4223.

    [5] [5] YARIZ K O, DUMAN D, ZAZO S C, et al. Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sen- sorineural hearing loss[J]. American Journal of Human Genetics, 2012, 91(5): 872-882.

    [6] [6] COHEN-SALMON M, EL-AMRAOUI A, LEIBOVICI M, et al. Otogelin: a glycoprotein specific to the acellular membranes of the inner ear[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica, 1997, 94(26): 14450-14455.

    [7] [7] ASHMORE J. Cochlear outer hair cell motility[J]. Physiological Reviews, 2008, 88( 1): 173-210.

    [8] [8] DALLOS P. Cochlear amplification, outer hair cells and prestin [J]. Current Opinion in Neurobiology, 2008, 18(4): 370-376.

    [9] [9] JOVINEL, DARIE CC, LITSCHERE S, et al. Zona pellucida domain proteins[J]. Annual Review ofBiochemistry, 2005, 74: 83-114.

    [10] [10] JOVINE L, QI H, WILLIAMS Z, et al. The ZP domain is a con- served module for polymerization of extracellular proteins[J]. Nature Cell Biology, 2002, 4(6): 457-461.

    [11] [11] WASSARMAN PM, JOVINE L, LITSCHER E S. A profile offertil- ization in mammals[J]. Nature Cell Biology, 2001, 3(2): E59-E64.

    [12] [12] BORK P, SANDER C. A large domain common to sperm receptors (Zp2 and Zp3) and TGF-beta type III receptor[J]. FEBS Letters, 1992, 300(3): 237-240.

    [13] [13] LEMONS C, SELLON J B, BOATTI E, et al. Anisotropic material properties of wild-type and Tectb-/- tectorial membranes[J]. Bio- physical Journal, 2019, 116(3): 573-585.

    [14] [14] VERHOEVEN K, VAN LAER L, KIRSCHHOFER K, et al. Muta- tions in the human alpha-tectorin gene cause autosomal dominant non-syndromic hearing impairment[J]. Nature Genetics, 1998, 19( 1): 60-62.

    [15] [15] MEYER N C, ALASTI F, NISHIMURA C J, et al. Identification of three novel TECTA mutations in Iranian families with autoso- mal recessive nonsyndromic hearing impairment at the DFNB21 locus[J]. American Journal of Medical Genetics. Part A, 2007, 143A: 1623-1629.

    [16] [16] RUSSELL I J, LEGAN P K, LUKASHKINA V A, et al. Sharp- ened cochlear tuning in a mouse with a genetically modified tecto- rial membrane[J]. Nature Neuroscience, 2007, 10(2): 215-223.

    [17] [17] JONES G P, ELLIOTT S J, RUSSELL I J, et al. Modified pro- tein expression in the tectorial membrane of the cochlea reveals roles for the striated sheet matrix[J]. Biophysical Journal, 2015, 108( 1): 203-210.

    [18] [18] COUTINHO P, GOODYEAR R, LEGAN P K, et al. Chick alpha- tectorin: molecular cloning and expression during embryogenesis [J]. Hearing Research, 1999, 130( 1/2): 62-74.

    [19] [19] NICOLSON T. The genetics of hearing and balance in zebrafish [J]. Annual Review of Genetics, 2005, 39: 9-22.

    [20] [20] YU R, WANG P, CHEN X W. The role of gfi1.2 in the development of zebrafish inner ear[J]. Hearing Research, 2020, 396: 108055.

    [21] [21] WHITFIELD T T, RILEY B B, CHIANG M Y, et al. Development of the zebrafish inner ear[J]. Developmental Dynamics: an Offi- cial Publication of the American Association ofAnatomists, 2002, 223(4): 427-458.

    [22] [22] RILEY B B. Comparative assessment ofFgf’s diverse roles in in- ner ear development: a zebrafish perspective[J]. Developmental Dynamics: an Official Publication of the American Association of Anatomists, 2021, 250( 11): 1524-1551.

    [23] [23] XIE Binling, DENG Huiling, FU Guifang, et al. The establishment of the zebrafish myo7ab knockout lines[J]. Acta Laser Biology Sinica, 2021, 30(3): 217-222.

    [24] [24] ZHANG F, WEN Y, GUO X. CRISPR/Cas9 for genome editing: progress, implications and challenges[J]. Human Molecular Ge- netics, 2014, 23(R1): R40-R46.

    [25] [25] FETTIPLACE R, HACKNEY C M. The sensory and motor roles of auditory hair cells[J]. Nature Reviews Neuroscience, 2006, 7: 19-29.

    [26] [26] KIKKAWA Y, SEKI Y, OKUMURA K, et al. Advantages of a mouse model for human hearing impairment[J]. Experimental Animals, 2012, 61(2): 85-98.

    [27] [27] RICHARDSON G P, DE MONVEL J B, PETIT C. How the genet- ics of deafness illuminates auditory physiology[J]. Annual Re- view of Physiology, 2011, 73: 311-334.

    [28] [28] XIA A, GAO S S, YUAN T, et al. Deficient forward transduction and enhanced reverse transduction in the alpha tectorin C1509G human hearing loss mutation[J]. Disease Models & Mechanisms, 2010, 3(3/4): 209-223.

    [29] [29] LUKASHKIN AN, LEGAN P K, WEDDELL T D, et al. A mouse model for human deafness DFNB22 reveals that hearing impair- ment is due to a loss of inner hair cell stimulation[J]. Proceed- ings of the National Academy of Sciences of the United States of America, 2012, 109(47): 19351-19356.

    [30] [30] RAU A, LEGAN P K, RICHARDSON G P. Tectorin mRNA ex- pression is spatially and temporally restricted during mouse inner ear development[J]. The Journal of Comparative Neurology, 1999, 405(2): 271-280.

    [31] [31] CHEATHAM M A, GOODYEAR R J, HOMMA K, et al. Loss of the tectorial membrane protein CEACAM16 enhances spontane- ous, stimulus-frequency, and transiently evoked otoacoustic emis- sions[J]. The Journal of Neuroscience: the Official Journal of the Society for Neuroscience, 2014, 34(31): 10325-10338.

    [32] [32] YANG C H, CHENG C H, CHEN G D, et al. Zona pellucida do- main-containing protein β-tectorin is crucial for zebrafish proper inner ear development[J]. PloS One, 2011, 6(8): e23078.

    [33] [33] S?LLNER C, BURGHAMMER M, BUSCH-NENTWICH E, et al. Control of crystal size and lattice formation by starmaker in otolith biomineralization[J]. Science (New York, NY), 2003, 302(5643): 282-286.

    [34] [34] MURAYAMA E, HERBOMEL P, KAWAKAMI A, et al. Otolith matrix proteins OMP-1 and Otolin-1 are necessary for normal oto- lith growth and their correct anchoring onto the sensory maculae [J]. Mechanisms of Development, 2005, 122(6): 791-803.

    Tools

    Get Citation

    Copy Citation Text

    LIU Ling, ZHU Junwei, ZENG Ting, XIE Binling, TAO Guifang, ZHU Xianyu, XIE Huaping. Construction and Mechanism of tectb Inner Ear Gene Knockout Line in Zebrafish[J]. Acta Laser Biology Sinica, 2024, 33(2): 143

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Nov. 12, 2023

    Accepted: --

    Published Online: Aug. 14, 2024

    The Author Email: Huaping XIE (hpxie@hunnu.edu.cn)

    DOI:10.3969/j.issn.1007-7146.2024.02.006

    Topics