Laser & Optoelectronics Progress, Volume. 60, Issue 10, 1028003(2023)

RA-ProtoNet: Classification Based on Meta-Learning for Few-Shot Remote Sensing Scene

Qi He1, Jinyuan Zhang1, Dongmei Huang3, Yanling Du1, and Huifang Xu1,2、*
Author Affiliations
  • 1College of Information, Shanghai Ocean University, Shanghai 201306, China
  • 2College of Information Technology, Shanghai Jian Qiao University, Shanghai 201306, China
  • 3Shanghai University of Electric Power, Shanghai 200090, China
  • show less
    Figures & Tables(11)
    Model structure diagram of RA-ProtoNet
    Class-level attention module
    Partial samples.(a) UC-21 dataset;(b) AID-30 dataset;(c) NP-45 dataset
    Confusion matrix of UC-21 dataset: ProtoNet (left); RA-ProtoNe t(right)
    Confusion matrix of AID-30 dataset: ProtoNet (left); RA-ProtoNet (right)
    Partial test results of support set and query set
    • Table 1. Parameters of ResNet14 feature embedding module

      View table

      Table 1. Parameters of ResNet14 feature embedding module

      Network layerStructureOutput
      Convolution7×7,64,S=2112×112,64
      Max_pool3×3,S=256×56,64
      Residual_lock2_x3×3,643×3,64×256×56,64
      Residual_block3_x3×3,1283×3,128×228×28,128
      Residual_block4_x3×3,2563×3,256×214×14,256
    • Table 2. Experimental environment

      View table

      Table 2. Experimental environment

      FrameworkPythoncuDNNGPUCUDAcuDNN
      PyTorch3.6.27.5RTX 2080TI10.17.5
    • Table 3. Classification effect on UC-21/AID-30/NP-45 datasets (5-way)

      View table

      Table 3. Classification effect on UC-21/AID-30/NP-45 datasets (5-way)

      ModelNetworkUC-21AID-30NP-45
      1-shot5-shot10-shot1-shot5-shot10-shot1-shot5-shot10-shot
      Transfer learningGoogleNet23.4545.2255.5920.7640.6755.6320.7640.6755.63
      AlexNet20.1925.0830.0020.1224.5629.5420.0825.4955.35
      ResNet5020.9529.2346.7120.0729.6145.9621.1429.5249.62
      ResNet10120.7229.2931.6120.6723.6634.9020.7127.1835.18
      Meta learningMAML47.5363.1364.9947.9361.7969.9042.2961.8468.77
      ProtoNet52.2769.8671.6955.6368.5670.4840.3363.8269.53
      Lifelong39.4757.4051.4372.9
      RS-MetaNet57.2376.0881.2356.3274.4880.5752.7871.4977.37
      RA-ProtoNet61.7781.3084.0756.7483.2987.3056.6081.2286.56
    • Table 4. Performance evaluation of different embedded networks

      View table

      Table 4. Performance evaluation of different embedded networks

      NetworkUC-21 /%AID-30 /%NP-45 /%Memory /MB
      VGG-1668.6455.1674.3468.4
      ResNet1481.3083.2981.2235.1
      ResNet1878.9281.3682.2354.9
      ResNet5076.8477.6270.38138
    • Table 5. Evaluation of different prototype expression methods

      View table

      Table 5. Evaluation of different prototype expression methods

      Feature representationUC-21 /%AID-30 /%NP-45 /%
      5-shot10-shot5-shot10-shot5-shot10-shot
      Sum76.5779.7878.6579.9378.6180.13
      Mean79.4983.6181.1486.4580.4084.79
      Attention81.3084.0783.2987.3081.2286.56
    Tools

    Get Citation

    Copy Citation Text

    Qi He, Jinyuan Zhang, Dongmei Huang, Yanling Du, Huifang Xu. RA-ProtoNet: Classification Based on Meta-Learning for Few-Shot Remote Sensing Scene[J]. Laser & Optoelectronics Progress, 2023, 60(10): 1028003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Remote Sensing and Sensors

    Received: Jan. 4, 2022

    Accepted: Jan. 28, 2022

    Published Online: May. 17, 2023

    The Author Email: Huifang Xu (17069@gench.edu.cn)

    DOI:10.3788/LOP220432

    Topics