Chinese Journal of Lasers, Volume. 44, Issue 7, 703005(2017)

Research Progress of Ultrafast Nonlinear Optics and Applications of Nanostructures with Localized Plasmon Resonance

Guo Qiangbing1、*, Liu Xiaofeng1, and Qiu Jianrong2
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • show less
    References(36)

    [1] [1] Kauranen M, Zayats A V. Nonlinear plasmonics[J]. Nature Photonics, 2012, 6(11): 737-748.

    [2] [2] Macdonald K F, Sámson Z L, Stockman M I, et al. Ultrafast active plasmonics[J]. Nature Photonics, 2008, 3(1): 55-58.

    [3] [3] Chen H J, Shao L, Li Q, et al. Gold nanorods and their plasmonic properties[J]. Chemical Society Review, 2013, 42(7): 2679-2724.

    [4] [4] Link S, El-Sayed M. Opticalproperties and ultrafast dynamics of metallic nanocrystals[J]. Annual Review Physical Chemistry, 2003, 54: 331-366.

    [5] [5] Hartland G V. Optical studies of dynamics in noble metal nanostructures[J]. Chemical Reviews, 2011, 111(6): 3858-3887.

    [6] [6] Guo Q B, Ji M X, Yao Y H, et al. Cu-Sn-S plasmonic semiconductor nanocrystals for ultrafast photonics[J]. Nanoscale, 2016, 8: 18277-18281.

    [7] [7] Tyborski T, Kalusniak S, Sadofev S, et al. Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers[J]. Physical Review Letters, 2015, 115(14): 147401.

    [8] [8] Link S, El-Sayed M A. Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods[J]. Journal of Physical Chemistry B, 1999, 103(40): 8410-8426.

    [9] [9] Scotognella F, Valle G D, Kandada A R S, et al. Plasmon dynamics in colloidal Cu2-xSe nanocrystals[J]. Nano Letters, 2011, 11(11): 4711-4717.

    [10] [10] Prakash J, Harris R A, Swart H C. Embedded plasmonic nanostructures: Synthesis, fundamental aspects and their surface enhanced Raman scattering applications[J]. International Reviews in Physical Chemistry, 2016, 35(3): 353-398.

    [11] [11] Rycenga M, Hou K K, Cobley C M, et al. Probing the surface-enhanced Raman scattering properties of Au-Ag nanocages at two different excitation wavelengths[J]. Physical Chemistry Chemical Physics, 2009, 11: 5903-5908.

    [12] [12] Ross M B, Schatz G C. Aluminum and indium plasmonic nanoantennas in the ultraviolet[J]. The Journal of Physical Chemistry C, 2014, 118(23): 12506-12514.

    [13] [13] Luther J M, Jain P K, Ewers T,et al. Localized surface plasmon resonances arising from free carriers in doped quantum dots[J]. Nature Materials, 2011, 10: 361-366.

    [14] [14] Naik G V, Liu J J, Kildishev A V, et al. Demonstration of Al∶ZnO as a plasmonic component for near-infrared metamaterials[J]. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109(23): 8834-8838.

    [15] [15] Naik G V, Shalaev V M, Boltasseva A. Alternative plasmonic materials: Beyond gold and silver[J]. Advanced Materials, 2013, 25(24): 3264-3294.

    [16] [16] Kim J, Dutta A,Memarzadeh B, et al. Zinc oxide based plasmonic multilayer resonator: Localized and gap surface plasmon in the infrared[J]. ACS Photonics, 2015, 2(8): 1224-1230.

    [17] [17] Guler U, Shalaev V M, Boltasseva A. Nanoparticle plasmonics: Going practical with transition metal nitrides[J]. Materials Today, 2015, 18(4): 227-237.

    [18] [18] Tyborski T, Kalusniak S, Sadofev S, et al. Ultrafast nonlinear response of bulk plasmons in highly doped ZnO layers[J]. Physical Review Letters, 2015, 115(14): 14701.

    [19] [19] Ciattoni A, Marini A, Rizza C. All-optical modulation in wavelength-sized epsilon-near-zero media[J]. Optics Letters, 2016, 41(13): 3102-3105.

    [20] [20] Kim J, Dutta A, Naik G V, et al. Role of epsilon-near-zero substrates in the optical response of plasmonic antennas[J]. Optica, 2016, 3(3): 339-346.

    [21] [21] Kriegel I, Scotognella F, Manna L. Plasmonic doped semiconductor nanocrystals: Properties, fabrication, applications and perspectives[J]. Physics Reports, 2017, 674: 1-52. http://dx.doi.org/10.1016/j.physrep.2017.01.003.

    [22] [22] Guo Q B, Yao Y H, Luo Z C, et al. Universal near-infrared and mid-infrared optical modulation for ultrafast pulse generation enabled by colloidal plasmonic semiconductor nanocrystals[J]. ACS Nano, 2016, 10(10): 9463-9469.

    [23] [23] Guo Q B, Cui Y D, Yao Y H, et al. An ultrafast optical switch based on a nanostructured epsilon-near-zero medium[J]. Advanced Materials, 2017. DOI: 10.1002/adma.201700754.

    [24] [24] Zhang H, Hu Z L, Ma Z J,et al. Anisotropically enhanced nonlinear optical properties of ensembles of gold nanorods electrospun in polymer nanofiber film[J]. ACS Applied Materials & Interfaces, 2016, 8(3): 2048-2053.

    [25] [25] Sun C K, Vallée F, Acioli L H, et al. Femtosecond-tunable measurement of electron thermalization in gold[J]. Physical Review B, 1994, 50(20): 15337-15348.

    [26] [26] Mendelsberg R J, Garcia G, Li H B, et al. Understanding the plasmon resonance in ensembles of degenerately doped semiconductor nanocrystals[J]. The Journal of Physical Chemistry C, 2012, 116(22): 12226-12231.

    [27] [27] Valle G D, Scotognella F, Kandada A R S, et al. Ultrafast optical mapping of nonlinear plasmon dynamics in Cu2-xSe nanoparticles[J]. The Journal of Physical Chemistry Letters, 2013, 4(19): 3337-3344.

    [28] [28] Zavelani-Rossi M, Polli D, Kochtcheev S, et al. Transient optical response of a single gold nanoantenna: The role of plasmon detuning[J]. ACS Photonics, 2015, 2(4): 521-529.

    [29] [29] Boni L D, Wood E L, Toro C, et al. Optical saturable absorption in gold nanoparticles[J]. Plasmonics, 2008, 3: 171-176.

    [30] [30] Kim K H, Husakou A, Herrmann J. Saturable absorption in composites doped with metal nanoparticles[J]. Optics Express, 2010, 18(21): 21918-21925.

    [31] [31] Kang Z, Xu Y, Zhang L, et al. Passively mode-locking induced by gold nanorods in erbium-doped fiber lasers[J]. Applied Physics Letters, 2013, 103(4): 041105.

    [32] [32] Kang Z, Guo X Y, Jia Z X, et al. Gold nanorods as saturable absorbers for all-fiber passively Q-switched erbium-doped fiber laser[J]. Optical Materials Express, 2013, 3(11): 1986-1991.

    [33] [33] Wang X D, Luo Z C, Liu H, et al. Microfiber-based gold nanorods as saturable absorber for femtosecond pulse generation in a fiber laser[J]. Applied Physics Letters, 2014, 105(16): 161107.

    [34] [34] Krasavin A V, Macdonald K F, Schwanecke A S, et al. Gallium/aluminum nanocomposite materials for nonlinear optics and nonlinear plasmonics[J]. Applied Physics Letters, 2006, 89(3): 031118.

    [35] [35] Elim H I, Yang J, Lee J Y, et al. Observation of saturable and reverse-saturable absorption at longitudinal surface plasmon resonance in gold nanrods[J]. Applied Physics Letters, 2006, 88(8): 083107.

    [36] [36] Lee J, Koo J, Lee J, et al. End-to-end self-assembly of gold nanorods in water solution for absorption enhancement at a 1-to-2 μm band for a broadband saturable absorber[J]. Journal of Lightwave Technology, 2016, 34(22): 5250-5257.

    Tools

    Get Citation

    Copy Citation Text

    Guo Qiangbing, Liu Xiaofeng, Qiu Jianrong. Research Progress of Ultrafast Nonlinear Optics and Applications of Nanostructures with Localized Plasmon Resonance[J]. Chinese Journal of Lasers, 2017, 44(7): 703005

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Special Issue:

    Received: Feb. 6, 2017

    Accepted: --

    Published Online: Jul. 5, 2017

    The Author Email: Guo Qiangbing (qbguo@zju.edu.cn)

    DOI:10.3788/cjl201744.0703005

    Topics