Acta Optica Sinica, Volume. 43, Issue 17, 1728001(2023)
Broadband and Highly Sensitive Measurement Based on Rydberg Atomic Heterodyne Sensor
[1] Yang K, An Q, Yao J W et al. Rydberg atom-based ultra-broadband radio frequency sensor from 100 kHz to 40 GHz[J]. Acta Optica Sinica, 42, 1528002(2022).
[2] Chu L J. Physical limitations of omni-directional antennas[J]. Journal of Applied Physics, 19, 1163-1175(1948).
[3] Yang K, Sun Z S, Mao R Q et al. Wideband Rydberg atom-based receiver for amplitude modulation radio frequency communication[J]. Chinese Optics Letters, 20, 081203(2022).
[4] Yang K, Mao R Q, An Q et al. Amplitude-modulated RF field Rydberg atomic sensor based on homodyne technique[J]. Sensors and Actuators A: Physical, 351, 114167(2023).
[5] Sedlacek J A, Schwettmann A, Kübler H et al. Microwave electrometry with Rydberg atoms in a vapour cell using bright atomic resonances[J]. Nature Physics, 8, 819-824(2012).
[6] Prajapati N, Robinson A K, Berweger S et al. Enhancement of electromagnetically induced transparency based Rydberg-atom electrometry through population repumping[J]. Applied Physics Letters, 119, 214001(2021).
[7] Zhang L H, Liu Z K, Liu B et al. Rydberg microwave frequency comb spectrometer[J]. Physical Review Applied, 18, 014033(2022).
[8] Liu B, Zhang L H, Liu Z K et al. Highly sensitive measurement of a megahertz rf electric field with a Rydberg-atom sensor[J]. Physical Review Applied, 18, 014045(2022).
[9] Simons M T, Artusio-Glimpse A B, Holloway C L et al. Continuous radio-frequency electric-field detection through adjacent Rydberg resonance tuning[J]. Physical Review A, 104, 032824(2021).
[10] Jia F D, Liu X B, Mei J et al. Span shift and extension of quantum microwave electrometry with Rydberg atoms dressed by an auxiliary microwave field[J]. Physical Review A: General Physics, 103, 63113(2021).
[11] Yao J W, An Q, Zhou Y L et al. Sensitivity enhancement of far-detuned RF field sensing based on Rydberg atoms dressed by a near-resonant RF field[J]. Optics Letters, 47, 5256-5259(2022).
[12] Anderson D A, Paradis E G, Raithel G. A vapor-cell atomic sensor for radio-frequency field detection using a polarization-selective field enhancement resonator[J]. Applied Physics Letters, 113, 073501(2018).
[13] Holloway C L, Prajapati N, Artusio-Glimpse A B et al. Rydberg atom-based field sensing enhancement using a split-ring resonator[J]. Applied Physics Letters, 120, 204001(2022).
[14] Simons M T, Haddab A H, Gordon J A et al. Embedding a Rydberg atom-based sensor into an antenna for phase and amplitude detection of radio-frequency fields and modulated signals[J]. IEEE Access, 7, 164975-164985(2019).
[15] Simons M T, Haddab A H, Gordon J A et al. A Rydberg atom-based mixer: measuring the phase of a radio frequency wave[J]. Applied Physics Letters, 114, 114101(2019).
[16] Jing M Y, Hu Y, Ma J et al. Atomic superheterodyne receiver based on microwave-dressed Rydberg spectroscopy[J]. Nature Physics, 16, 911-915(2020).
[17] Cai M H, Xu Z S, You S H et al. Sensitivity improvement and determination of Rydberg atom-based microwave sensor[J]. Photonics, 9, 250-263(2022).
[18] Fan J B, Hao L P, Bai J X et al. High-sensitive microwave sensor and communication based on Rydberg atoms[J]. Acta Physica Sinica, 70, 063201(2021).
[19] Holloway C L, Gordon J A, Jefferts S et al. Broadband Rydberg atom-based electric-field probe for SI-traceable, self-calibrated measurements[J]. IEEE Transactions on Antennas and Propagation, 62, 6169-6182(2014).
[20] Meyer D H, Kunz P D, Cox K C. Waveguide-coupled Rydberg spectrum analyzer from 0 to 20 GHz[J]. Physical Review Applied, 15, 014053(2021).
[21] Ryan C, Gonçalves L F, Sapiro R E et al. Atomic 2D electric field imaging of a Yagi–Uda antenna near-field using a portable Rydberg-atom probe and measurement instrument[J]. Advanced Optical Technologies, 9, 305-312(2019).
[22] Wang Y Z, Fu Y Q, Lin Y et al. Design and simulation of optical metasurface integrated atomic vapor cell[J]. Laser & Optoelectronics Progress, 59, 1124001(2022).
[23] Jin G, Cheng Y J, Huang C Z et al. Generation of laser system using for Rydberg atom excitation[J]. Chinese Journal of Lasers, 49, 0701003(2022).
[24] Yang K, Mao R Q, An Q et al. Laser frequency locking method for Rydberg atomic sensing[J]. Chinese Optics Letters, 21, 021407(2023).
[25] Du L M, Xie Y Z, Wang S F. Simulation computation and analytic modification of characteristic impedance of parallel-plate transmission line[J]. High Power Laser and Particle Beams, 27, 083201(2015).
[26] Holloway C L, Simons M T, Gordon J A et al. Electric field metrology for SI traceability: systematic measurement uncertainties in electromagnetically induced transparency in atomic vapor[J]. Journal of Applied Physics, 121, 233106(2017).
[27] Gordon J A, Simons M T, Haddab A H et al. Weak electric-field detection with sub-1 Hz resolution at radio frequencies using a Rydberg atom-based mixer[J]. AIP Advances, 9, 045030(2019).
[28] Anderson D A, Sapiro R E, Raithel G. A self-calibrated SI-traceable Rydberg atom-based radio frequency electric field probe and measurement instrument[J]. IEEE Transactions on Antennas and Propagation, 69, 5931-5941(2021).
[29] Mao R Q, Lin Y, Yang K et al. A high-efficiency fiber-coupled Rydberg-atom integrated probe and its imaging applications[J]. IEEE Antennas and Wireless Propagation Letters, 22, 352-356(2023).
Get Citation
Copy Citation Text
Kai Yang, Ruiqi Mao, Zhanshan Sun, Jianbing Li, Yunqi Fu. Broadband and Highly Sensitive Measurement Based on Rydberg Atomic Heterodyne Sensor[J]. Acta Optica Sinica, 2023, 43(17): 1728001
Category: Remote Sensing and Sensors
Received: Mar. 3, 2023
Accepted: Apr. 10, 2023
Published Online: Sep. 11, 2023
The Author Email: Sun Zhanshan (sunzhanshan11@nudt.edu.cn), Fu Yunqi (yunqifu@nudt.edu.cn)