International Journal of Extreme Manufacturing, Volume. 7, Issue 1, 15503(2025)

Fabrication of carbon nanotube neuromorphic thin film transistor arrays and their applications for flexible olfactory-visual multisensory synergy recognition

Sui Nianzi, Kang Kaixiang, Li Min, Zhang Dan, Li Benxiang, Shao Shuangshuang, Wang Hua, and Zhao Jianwen
References(53)

[1] [1] Merolla P A et al 2014 A million spiking-neuron integrated circuit with a scalable communication network and interface Science345 668–73

[2] [2] Schneider D 2018 U.S. supercomputing strikes back IEEE Spectr.55 52–53

[3] [3] Van De Burgt Y, Lubberman E, Fuller E J, Keene S T, Faria G C, Agarwal S, Marinella M J, Talin A A and Salleo A 2017 A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing Nat. Mater.16 414–8

[4] [4] Laughlin S B, de Ruyter van Steveninck R R and Anderson J C 1998 The metabolic cost of neural information Nat. Neurosci.1 36–41

[5] [5] Ren Y, Yang J Q, Zhou L, Mao J Y, Zhang S R, Zhou Y and Han S T 2018 Gate-tunable synaptic plasticity through controlled polarity of charge trapping in fullerene composites Adv. Funct. Mater.28 1805599

[6] [6] Wang Y, Lv Z Y, Chen J R, Wang Z P, Zhou Y, Zhou L, Chen X L and Han S T 2018 Photonic synapses based on inorganic perovskite quantum dots for neuromorphic computing Adv. Mater.30 1802883

[7] [7] Jang S, Jang S, Lee E H, Kang M, Wang G and Kim T W 2019 Ultrathin conformable organic artificial synapse for wearable intelligent device applications ACS Appl. Mater. Interfaces11 1071–80

[8] [8] Wang Y, Yin L, Huang S J, Xiao R L, Zhang Y Q, Li D K, Pi X D and Yang D R 2023 Silicon-nanomembrane-based broadband synaptic phototransistors for neuromorphic vision Nano Lett.23 8460–7

[9] [9] Chouhdry H H, Lee D H, Bag A and Lee N E 2023 A flexible artificial chemosensory neuronal synapse based on chemoreceptive ionogel-gated electrochemical transistor Nat. Commun.14 821

[10] [10] Wan H C, Zhao J Y, Lo L W, Cao Y Q, Seplveda N and Wang C 2021 Multimodal artificial neurological sensory–memory system based on flexible carbon nanotube synaptic transistor ACS Nano15 14587–97

[11] [11] Wang S J et al 2023 An organic electrochemical transistor for multi-modal sensing, memory and processing Nat. Electron.6 281–91

[12] [12] Wu X M, Li E L, Liu Y Q, Lin W K, Yu R J, Chen G X, Hu Y Y, Chen H P and Guo T L 2021 Artificial multisensory integration nervous system with haptic and iconic perception behaviors Nano Energy85 106000

[13] [13] Wang Y R, Liu D X, Zhang Y M, Fan L C, Ren Q Q, Ma S H and Zhang M 2022 Stretchable temperature-responsive multimodal neuromorphic electronic skin with spontaneous synaptic plasticity recovery ACS Nano16 8283–93

[14] [14] Shen A M, Chen C L, Kim K, Cho B, Tudor A and Chen Y 2013 Analog neuromorphic module based on carbon nanotube synapses ACS Nano7 6117–22

[15] [15] Kim K, Chen C L, Truong Q, Shen A M and Chen Y 2013 A carbon nanotube synapse with dynamic logic and learning Adv. Mater.25 1693–8

[16] [16] Lonard F and Talin A A 2011 Electrical contacts to one- and two-dimensional nanomaterials Nat. Nanotechnol.6 773–83

[17] [17] Cao Q and Rogers J A 2009 Ultrathin films of single-walled carbon nanotubes for electronics and sensors: a review of fundamental and applied aspects Adv. Mater.21 29–53

[18] [18] Guo S Y, Hou P X, Zhang F, Liu C and Cheng H M 2022 Gas sensors based on single-wall carbon nanotubes Molecules27 5381

[19] [19] Jung S, Hauert R, Haluska M, Roman C and Hierold C 2021 Understanding and improving carbon nanotube-electrode contact in bottom-contacted nanotube gas sensors Sens. Actuators B 331 129406

[20] [20] Liu F F, Xiao M M, Ning Y K, Zhou S Y, He J P, Lin Y X and Zhang Z Y 2022 Toward practical gas sensing with rapid recovery semiconducting carbon nanotube film sensors Sci. China Inf. Sci.65 162402

[21] [21] Xue L N, Wang W, Guo Y L, Liu G Q and Wan P B 2017 Flexible polyaniline/carbon nanotube nanocomposite film-based electronic gas sensors Sens. Actuators B 244 47–53

[22] [22] Sun Y L, Li M J, Ding Y T, Wang H P, Wang H, Chen Z M and Xie D 2022 Programmable van-der-Waals heterostructure-enabled optoelectronic synaptic floating-gate transistors with ultra-low energy consumption InfoMat4 e12317

[23] [23] Shao H et al 2023 A reconfigurable optoelectronic synaptic transistor with stable Zr-CsPbI3 nanocrystals for visuomorphic computing Adv. Mater.35 2208497

[24] [24] Xie T H et al 2023 Carbon nanotube optoelectronic synapse transistor arrays with ultra-low power consumption for stretchable neuromorphic vision systems Adv. Funct. Mater.33 2303970

[25] [25] Chen Y T et al 2023 Bidirectional synaptic phototransistor based on two-dimensional ferroelectric semiconductor for mixed color pattern recognition ACS Nano17 12499–509

[26] [26] Brixi S, Melville O A, Boileau N T and Lessard B H 2018 The influence of air and temperature on the performance of PBDB-T and P3HT in organic thin film transistors J. Mater. Chem. C 6 11972–9

[27] [27] Zheng Z, Yao H F, Ye L, Xu Y, Zhang S Q and Hou J H 2020 PBDB-T and its derivatives: a family of polymer donors enables over 17% efficiency in organic photovoltaics Mater. Today35 115–30

[28] [28] Abousamra W H, Thomas D, Yang D, Islam S M, Winstead C and Kim Y G 2023 Synthesis and characterization of the donor-acceptor conjugated polymer PBDB-T implementing group IV element germanium Polymers15 2429

[29] [29] Zhou C S, Zhao J W, Ye J, Tange M, Zhang X, Xu W W, Zhang K D, Okazaki T and Cui Z 2016 Printed thin-film transistors and NO2 gas sensors based on sorted semiconducting carbon nanotubes by isoindigo-based copolymer Carbon108 372–80

[30] [30] Fang L, Dai S L, Zhao Y W, Liu D P and Huang J 2020 Light-stimulated artificial synapses based on 2D organic field-effect transistors Adv. Electron. Mater.6 1901217

[31] [31] Yang B et al 2020 Bioinspired multifunctional organic transistors based on natural chlorophyll/organic semiconductors Adv. Mater.32 2001227

[32] [32] Ren J P, Sun Y S, Huang S H, Huai Z X, Wang L X, Kong W G and Yang S P 2020 Broadening the light absorption range via PBDB-T to improve the power conversion efficiency in ternary organic solar cells Org. Electron.78 105587

[33] [33] Dass D 2018 Structural parameters, electronic properties, and band gaps of a single walled carbon nanotube: a pz orbital tight binding study Superlattices Microstruct.120 108–26

[34] [34] Wang X, Yang S T, Qin Z Z, Hu B, Bu L J and Lu G H 2023 Enhanced multiwavelength response of flexible synaptic transistors for human sunburned skin simulation and neuromorphic computation Adv. Mater.35 2303699

[35] [35] Dai S L, Wu X H, Liu D P, Chu Y L, Wang K, Yang B and Huang J 2018 Light-stimulated synaptic devices utilizing interfacial effect of organic field-effect transistors ACS Appl. Mater. Interfaces10 21472–80

[36] [36] Hu D C, Yang R, Jiang L and Guo X 2018 Memristive synapses with photoelectric plasticity realized in ZnO1–x/AlOy heterojunction ACS Appl. Mater. Interfaces10 6463–70

[37] [37] Li H K, Chen T P, Liu P, Hu S G, Liu Y, Zhang Q and Lee P S 2016 A light-stimulated synaptic transistor with synaptic plasticity and memory functions based on InGaZnOx–Al2O3 thin film structure J. Appl. Phys.119 244505

[38] [38] Li C H, Du W, Huang Y X, Zou J H, Luo L Z, Sun S, Govorov A O, Wu J, Xu H X and Wang Z M 2022 Photonic synapses with ultralow energy consumption for artificial visual perception and brain storage Opto-Electron. Adv.5 210069

[39] [39] Liu D P, Shi Q Q, Dai S L and Huang J 2020 The design of 3D-interface architecture in an ultralow-power, electrospun single-fiber synaptic transistor for neuromorphic computing Small16 1907472

[40] [40] Hao D D, Chen T Q, Guo P, Liu D P, Wang X, Huang H, Huang J, Shan F K and Yang Z Y 2023 Artificial optoelectronic synaptic devices based on vertical organic field-effect transistors with low energy consumption Adv. Compos. Hybrid Mater.6 129

[41] [41] Liu G C et al 2022 Ultralow-power and multisensory artificial synapse based on electrolyte-gated vertical organic transistors Adv. Funct. Mater.32 2200959

[42] [42] Cho S I, Jeon J B, Kim J H, Lee S H, Jeong W, Kim J, Kim G, Kim K M and Park S H K 2021 Synaptic transistors with human brain-like fJ energy consumption via double oxide semiconductor engineering for neuromorphic electronics J. Mater. Chem. C 9 10243–53

[43] [43] Shi Q Q, Liu D P, Hao D D, Zhang J Y, Tian L, Xiong L Z and Huang J 2021 Printable, ultralow-power ternary synaptic transistors for multifunctional information processing system Nano Energy87 106197

[44] [44] Shi J L, Jie J S, Deng W, Luo G, Fang X C, Xiao Y L, Zhang Y J, Zhang X J and Zhang X H 2022 A fully solution-printed photosynaptic transistor array with ultralow energy consumption for artificial-vision neural networks Adv. Mater.34 2200380

[45] [45] Zhu C G et al 2022 Optical synaptic devices with ultra-low power consumption for neuromorphic computing Light Sci. Appl.11 337

[46] [46] Mroczyski R, Taube A, Gieratowska S, Guziewicz E and Godlewski M 2012 Application of deposited by ALD HfO2 and Al2O3 layers in double-gate dielectric stacks for non-volatile semiconductor memory (NVSM) devices Appl. Surf. Sci.258 8366–70

[47] [47] Tang W H et al 2022 A van der waals ferroelectric tunnel junction for ultrahigh-temperature operation memory Small Methods6 2101583

[48] [48] Kawase T, Sakamoto S, Hori Y, Maki A, Suzuki Y and Kobayashi T 2009 Bimodal audio–visual training enhances auditory adaptation process NeuroReport20 1231–4

[49] [49] Gottfried J A and Dolan R J 2003 The nose smells what the eye sees: crossmodal visual facilitation of human olfactory perception Neuron39 375–86

[50] [50] Olofsson J K, Ekstrm I, Lindstrm J, Syrjnen E, Stigsdotter-Neely A, Nyberg L, Jonsson S and Larsson M 2020 Smell-based memory training: evidence of olfactory learning and transfer to the visual domain Chem. Senses45 593–600

[51] [51] Jiramongkolchai P et al 2021 Association of olfactory training with neural connectivity in adults with postviral olfactory dysfunction JAMA Otolaryngol Head Neck Surg.147 502–9

[52] [52] Saatci O, Altundag A, Duz O A and Hummel T 2020 Olfactory training ball improves adherence and olfactory outcomes in post-infectious olfactory dysfunction Eur. Arch. Oto-Rhino-Laryngol.277 2125–32

[53] [53] Khan A M, Piccirillo J, Kallogjeri D and Piccirillo J F 2023 Efficacy of combined visual-olfactory training with patient-preferred scents as treatment for patients with COVID-19 resultant olfactory loss: a randomized clinical trial JAMA Otolaryngol. Head Neck Surg.149 141–9

Tools

Get Citation

Copy Citation Text

Sui Nianzi, Kang Kaixiang, Li Min, Zhang Dan, Li Benxiang, Shao Shuangshuang, Wang Hua, Zhao Jianwen. Fabrication of carbon nanotube neuromorphic thin film transistor arrays and their applications for flexible olfactory-visual multisensory synergy recognition[J]. International Journal of Extreme Manufacturing, 2025, 7(1): 15503

Download Citation

EndNote(RIS)BibTexPlain Text
Save article for my favorites
Paper Information

Category:

Received: Mar. 26, 2024

Accepted: Apr. 17, 2025

Published Online: Apr. 17, 2025

The Author Email:

DOI:10.1088/2631-7990/ad8737

Topics