Journal of Quantum Optics, Volume. 29, Issue 2, 20001(2023)

Phase-sensitive Four-wave Mixing Process Based on Atomic Ensemble and Its Application

XU Xiao-yin1, LIU Sheng-shuai1, and JING Jie-tai1,2,3、*
Author Affiliations
  • 1[in Chinese]
  • 2[in Chinese]
  • 3[in Chinese]
  • show less
    References(65)

    [1] [1] EINSTEIN A, PODOLSKY B, ROSEN N. Can quantum-mechanical description of physical reality be considered complete?[J]. Physical Review, 1935, 47:777-780. DOI: 10.1103/PhysRev.47.777.

    [2] [2] DAVIDOVICH L. Sub-Poissonian processes in quantum optics[J]. Reviews of Modern Physics, 1996, 68(1):127-173. DOI: 10.1103/RevModPhys.68.127.

    [3] [3] LVOVSKY A I, RAYMER M G. Continuous-variable optical quantum-state tomography[J]. Reviews of Modern Physics, 2009, 81(1):299-332. DOI: 10.1103/RevModPhys.81.299.

    [4] [4] BRAUNSTEIN S L, VAN LOOK P. Quantum information with continuous variables[J]. Reviews of Modern Physics, 2005, 77(2):513-577. DOI: 10.1103/RevModPhys.77.513.

    [5] [5] POLKINGHORNE R E S AND RALPH T C. Continuous Variable Entanglement Swapping[J]. Physical Review Letters, 1999, 83(11):2095-2099. DOI: 10.1103/PhysRevLett.83.2095.

    [6] [6] JING J T, ZHANG J, YAN Y, et al. Experimental Demonstration of Tripartite Entanglement and Controlled Dense Coding for Continuous Variables[J]. Physical Review Letters, 2003, 90(16): 167903. DOI: 10.1103/PhysRevLett.90.167903.

    [7] [7] DONG R F, LASSEN M, HEERSINK J, et al. Experimental entanglement distillation of mesoscopic quantum states[J]. Nature Physics, 2008, 4:919-923. DOI: 10.1038/nphys1112.

    [8] [8] COELHO A S, BARBOSA F A S, CASSEMIRO K N, et al. Three-Color Entanglement[J]. Science, 2009, 326(5954):823-826. DOI: 10.1126/science.1178683.

    [9] [9] YOKOYAMA S, UKAI R, ARMSTRONG S C, et al. Ultra-large-scale continuous-variable cluster states multiplexed in the time domain[J]. Nature Photonics, 2013, 7:982-986. DOI: 10.1038/NPHOTON.2013.287.

    [10] [10] SU X L, HAO S H, DENG X W, et al. Gate sequence for continuous variable one-way quantum computation[J]. Nature Communications, 2013, 4:2828. DOI: 10.1038/ncomms3828.

    [11] [11] ROSLUND J, DE ARAJO R M, JIANG S F, et al. Wavelength-multiplexed quantum networks with ultrafast frequency combs[J]. Nature Photonics, 2014, 8:109-112. DOI: 10.1038/NPHOTON.2013.340.

    [12] [12] CHEN M, MENICUCCI N C, PFISTER O. Experimental Realization of Multipartite Entanglement of 60 Modes of a Quantum Optical Frequency Comb[J]. Physical Review Letters, 2014, 112(12):120505. DOI: 10.1103/PhysRevLett.112.120505.

    [13] [13] SHI S P, WANG Y J, YANG W H, et al. Detection and perfect fitting of 13.2 dB squeezed vacuum states by considering green-light-induced infrared absorption[J]. Optics Letters, 2018, 43(21):5411-5414. DOI: 10.1364/OL.43.005411.

    [14] [14] SU X L, TAN A H, JIA X J, et al. Experimental Preparation of Quadripartite Cluster and Greenberger-Horne-Zeilinger Entangled States for Continuous Variables[J]. Physical Review Letters, 2007, 98(7): 070502. DOI: 10.1103/PhysRevLett.98.070502.

    [15] [15] SU X L. ZHAO Y P, HAO S H, et al. Experimental preparation of eight-partite cluster state for photonic qumodes[J]. Optics Letters, 2012, 37(24):5178-5180. DOI: 10.1364/OL.37.005178.

    [16] [16] HUO M R, QIN J L, CHENG J L, et al. Deterministic quantum teleportation through fiber channels[J]. Science Advances, 2018, 4(10):eaas9401. DOI: 10.1126/sciadv.aas9401.

    [17] [17] LI X Y, PAN Q, JING J T, et al. Quantum Dense Coding Exploiting a Bright Einstein-Podolsky-Rosen Beam[J]. Physical Review Letters, 2002, 88(4):047904. DOI: 10.1103/PhysRevLett.88.047904.

    [18] [18] JIA X J, SU X L, PAN Q, et al. Experimental Demonstration of Unconditional Entanglement Swapping for Continuous Variables[J]. Physical Review Letters, 2004, 93(25):250503. DOI: 10.1103/PhysRevLett.93.250503.

    [19] [19] SU X L, TIAN C X, DENG X W, et al. Quantum Entanglement Swapping between Two Multipartite Entangled States[J]. Physical Review Letters, 2016, 117(24):240503. DOI: 10.1103/PhysRevLett.117.240503.

    [20] [20] YAN Z H, WU L, JIA X J, et al. Establishing and storing of deterministic quantum entanglement among three distant atomic ensembles[J]. Nature Communications, 2017, 8:718. DOI: 10.1038/s41467-017-00809-9.

    [21] [21] DENG X W, XIANG Y, TIAN C X, et al. Demonstration of Monogamy Relations for Einstein-Podolsky-Rosen Steering in Gaussian Cluster States[J]. Physical Review Letters, 2017, 118(23):230501. DOI: 10.1103/PhysRevLett.118.230501.

    [22] [22] WU L-A,KIMBLE H J, HALL J L, et al. Generation of Squeezed States by Parametric Down Conversion[J]. Physical Review Letters, 1986, 57(20):2520-2523. DOI: 10.1103/PhysRevLett.57.2520.

    [23] [23] OU Z Y, PEREIRA S F, KIMBLE H J, et al. Realization of the Einstein-Podolsky-Rosen paradox for continuous variables[J]. Physical Review Letters, 1992, 68(25):3663-3666. DOI: 10.1103/PhysRevLett.68.3663.

    [24] [24] ZHOU Y Y, JIA X J, LI F, et al. Experimental generation of 8.4 dB entangled state with an optical cavity involving a wedged type-II nonlinear crystal[J]. Optics Express, 2015, 23(4):4952-4959. DOI: 10.1364/OE.23.004952.

    [25] [25] ZHANG Y, WANG H, LI X Y, et al. Experimental generation of bright two-mode quadrature squeezed light from a narrow-band nondegenerate optical parametric amplifier[J]. Physical Review A, 2000, 62(2):023813. DOI: 10.1103/PhysRevA.62.023813.

    [26] [26] WANG Y, SHEN H, JIN X L, et al. Experimental generation of 6 dB continuous variable entanglement from a nondegenerate optical parametric amplifier[J]. Optics Express, 2010, 18(6):6149-6155. DOI: 10.1364/OE.18.006149.

    [27] [27] PENG K C, PAN Q, WANG H, et al. Generation of two-mode quadrature-phase squeezing and intensity-difference squeezing from a cw-NOPO[J]. Applied Physics B, 1998, 66:755-758. DOI: 10.1007/s003400050463.

    [28] [28] ZHOU Y Y, JIA X J, LI F, et al. Quantum Coherent Feedback Control for Generation System of Optical Entangled State[J]. Scientific Reports, 2015, 5:11132. DOI: 10.1038/srep11132.

    [29] [29] YAN Z H, JIA X J, SU X L, et al. Cascaded entanglement enhancement[J]. Physical Review A, 2012, 85(4):040305. DOI: 10.1103/PhysRevA.85.040305.

    [30] [30] GUO R X, JIA X J, XIE C D, et al. A portable multi-purpose non-classical light source[J]. Optics Communications, 2002, 211(1-6):243-248. DOI: 10.1016/S0030-4018(02)01862-X.

    [31] [31] MAEDA M W, KUMAR P, SHAPIRO J H. Observation of squeezed noise produced by forward four-wave mixing in sodium vapor[J]. Optics Letters, 1987, 12(3):161-163. DOI: 10.1364/OL.12.000161.

    [32] [32] HSU M T L, HTET G, PENG A, et al. Effect of atomic noise on optical squeezing via polarization self-rotation in a thermal vapor cell[J]. Physical Review A, 2006, 73(2):023806. DOI: 10.1103/PhysRevA.73.023806.

    [33] [33] TANG R Y, DEVGAN P S, GRIGORYAN V S, et al. In-line phase-sensitive amplification of multichannel CW signals based on frequency nondegenerate four-wave-mixing in fiber[J]. Optics Express, 2008, 16(12):9046-9053. DOI: 10.1364/OE.16.009046.

    [34] [34] TONG Z, LUNDSTRM C, ANDREKSON P A, et al. Towards ultrasensitive optical links enabled by low-noise phase-sensitive amplifiers[J]. Nature Photonics, 2011, 5: 430-436. DOI: 10.1038/NPHOTON.2011.79.

    [35] [35] SLUSHER R E, HOLLBERG L, YURKE B, et al. Squeezed states in optical cavities: A spontaneous-emission-noise limit[J]. Physical Review A, 1985, 31(5):3512-3515. DOI: 10.1103/PhysRevA.31.3512.

    [36] [36] HOPE D M, BACHOR H-A, MANSON P J, et al. Observation of quadrature squeezing in a cavity-atom system[J]. Physical Review A, 1992, 46(3):R1181-R1184. DOI: 10.1103/PhysRevA.46.R1181.

    [37] [37] RIES J, BREZGER B, LVOVSKY A I. Experimental vacuum squeezing in rubidium vapor via self-rotation[J]. Physical Review A, 2003, 68(2):025801. DOI: 10.1103/PhysRevA.68.025801.

    [38] [38] OROZCO L A, RAIZEN M G, XIAO M, et al. Squeezed-state generation in optical bistability[J]. Journal of the Optical Society of America B, 1987, 4(10):1490-1500. DOI: 10.1364/JOSAB.4.001490.

    [39] [39] VALLET M, PINARD M, GRYNBERG G. Generation of Twin Photon Beams in a Ring Four-Wave Mixing Oscillator[J]. Europhysics Letters, 1990, 11(8):739-744. DOI: 10.1209/0295-5075/11/8/008.

    [40] [40] JOSSE V, DANTAN A, VERNAC L, et al. Polarization Squeezing with Cold Atoms[J]. Physical Review Letters, 2003, 91(10):103601. DOI: 10.1103/PhysRevLett.91.103601.

    [41] [41] SLUSHER R E, HOLLBERG L W, YURKE B, et al. Observation of Squeezed States Generated by Four-Wave Mixing in an Optical Cavity[J]. Physical Review Letters, 1985, 55(22):2409-2412. DOI: 10.1103/PhysRevLett.55.2409.

    [42] [42] MCCORMICK C F, BOYER V, ARIMONDO E, et al. Strong relative intensity squeezing by four-wave mixing in rubidium vapor[J]. Optics Letters, 2007, 32(2):178-180. DOI: 10.1364/OL.32.000178.

    [43] [43] JASPERSE M, TURNER L D, SCHOLTEN R E. Relative intensity squeezing by four-wave mixing with loss: an analytic model and experimental diagnostic[J]. Optics Express, 2011, 19(4):3765-3774. DOI: 10.1364/OE.19.003765.

    [44] [44] BOYER V, MARINO A M, POOSER R C, et al. Entangled images from four-wave mixing[J]. Science, 2008, 321(5888):544-547. DOI: 10.1126/science.1158275.

    [45] [45] LI S, PAN X Z, REN Y, et al. Deterministic generation of orbital-angular-momentum multiplexed tripartite entanglement[J]. Physical Review Letters, 2020, 124(8):083605. DOI: 10.1103/PhysRevLett.124.083605.

    [46] [46] CAO L M, QI J, DU J J, et al. Experimental generation of quadruple quantum-correlated beams from hot rubidium vapor by cascaded four-wave mixing using spatial multiplexing[J]. Physical Review A, 2017, 95(2):023803. DOI: 10.1103/PhysRevA.95.023803.

    [47] [47] BOYER V, MARINO A M, LETT P D. Generation of Spatially Broadband Twin Beams for Quantum Imaging[J]. Physical Review Letters, 2008, 100(14):143601. DOI: 10.1103/PhysRevLett.100.143601.

    [48] [48] CHEN H X, ZHANG J. Phase-sensitive manipulations of the two-mode entangled state by a type-II nondegenerate optical parametric amplifier inside an optical cavity[J]. Physical Review A, 2009, 79(6):063826. DOI: 10.1103/PhysRevA.79.063826.

    [49] [49] SHANG Y N, JIA X J, SHEN Y M, et al. Continuous variable entanglement enhancement and manipulation by a subthreshold Type II optical parametric amplifier[J]. Optics Letters, 2010, 35(6):853-855. DOI: 10.1364/OL.35.000853.

    [50] [50] ZHANG J, YE C G, GAO F, et al. Phase-sensitive manipulations of a squeezed vacuum field in an optical parametric amplifier inside an optical cavity[J]. Physical Review Letters, 2008, 101(23):233602. DOI: 10.1103/PhysRevLett.101.233602.

    [51] [51] HUDELIST F, KONG J, LIU C J, et al. Quantum metrology with parametric amplifierbased photon correlation interferometers[J]. Nature Communications, 2014, 5:3049. DOI: 10.1038/ncomms4049.

    [52] [52] ANDERSON B E, SCHMITTBERGER B L, GUPTA P, et al. Optimal phase measurements with bright- and vacuum-seeded SU(1,1) interferometers[J]. Physical Review A, 2017, 95(6):063843. DOI: 10.1103/PhysRevA.95.063843.

    [53] [53] SZIGETI S S, LEWIS-SWAN R J, HAINE S A. Pumped-Up SU(1,1) Interferometry[J]. Physical Review Letters, 2017, 118(15):150401. DOI: 10.1103/PhysRevLett.118.150401.

    [54] [54] MANCEAU M, LEUCHS G, KHALILI F, et al. Detection Loss Tolerant Supersensitive Phase Measurement with an SU(1,1) Interferometer[J]. Physical Review Letters, 2017, 119(22):223604. DOI: 10.1103/PhysRevLett.119.223604.

    [55] [55] ANDERSON B E, GUPTA P, SCHMITTBERGER B L, et al. Phase sensing beyond the standard quantum limit with a variation on the SU(1,1) interferometer[J]. Optica, 2017, 4(7):752-756. DOI: 10.1364/OPTICA.4.000752.

    [56] [56] MCCORMICK C F, MARINO A M, BOYER V, et al. Strong low-frequency quantum correlations from a four-wave-mixing amplifier[J]. Physical Review A, 2008, 78(4):043816.

    [57] [57] FANG Y M, JING J T. Quantum squeezing and entanglement from a two-mode phase-sensitive amplifier via four-wave mixing in rubidium vapor[J]. New Journal of Physics, 2015, 17:023027. DOI: 10.1088/1367-2630/17/2/023027.

    [58] [58] DUAN L M, GIEDKE G, CIRAC J I, et al. Inseparability Criterion for Continuous Variable Systems[J]. Physical Review Letters, 2000, 84(12):2722-2725. DOI: 10.1103/PhysRevLett.84.2722.

    [59] [59] SIMON R. Peres-Horodecki Separability Criterion for Continuous Variable Systems[J]. Physical Review Letters, 2000, 84(12):2726-2729. DOI: 10.1103/PhysRevLett.84.2726.

    [61] [61] LIU S S, LOU Y B, JING J T. Interference-Induced Quantum Squeezing Enhancement in a Two-beam Phase-Sensitive Amplifier[J]. Physical Review Letters, 2019, 123(11):113602. DOI: 10.1103/PhysRevLett.123.113602.

    [63] [63] LIU S S, LOU Y B, JING J T. Phase manipulated two-mode entangled state from a phase-sensitive amplifier[J]. Optics Express, 2021, 29(24):38971. DOI: 10.1364/OE.439375.

    [64] [64] LIU S S, LOU Y B, XIN J, et al. Quantum Enhancement of Phase Sensitivity for the Bright-Seeded SU(1,1) Interferometer with Direct Intensity Detection[J]. Physical Review Applied, 2018, 10(6):064046. DOI: 10.1103/PhysRevApplied.10.064046.

    [65] [65] QIN Z Z, CAO L M, WANG H L, et al. Experimental Generation of Multiple Quantum Correlated Beams from Hot Rubidium Vapor[J]. Physical Review Letters, 2014, 113(2):023602. DOI: 10.1103/PhysRevLett.113.023602.

    [66] [66] POOSER R C, MARINO A M, BOYER V, et al. Low-Noise Amplification of a Continuous-Variable Quantum State[J]. Physical Review Letters, 2009, 103(1):010501. DOI: 10.1103/PhysRevLett.103.010501.

    [67] [67] LIU C J, JING J T, ZHOU Z F, et al. Realization of low frequency and controllable bandwidth squeezing based on a four-wave-mixing amplifier in rubidium vapor[J]. Optics Letters, 2011, 36(15):2979-2981. DOI: 10.1364/OL.36.002979.

    Tools

    Get Citation

    Copy Citation Text

    XU Xiao-yin, LIU Sheng-shuai, JING Jie-tai. Phase-sensitive Four-wave Mixing Process Based on Atomic Ensemble and Its Application[J]. Journal of Quantum Optics, 2023, 29(2): 20001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Feb. 28, 2022

    Accepted: --

    Published Online: Mar. 15, 2024

    The Author Email: JING Jie-tai (jtjing@phy.ecnu.edu.cn)

    DOI:10.3788/jqo20232902.0001

    Topics