Acta Optica Sinica, Volume. 44, Issue 17, 1732003(2024)

Applications and Prospects of High Harmonics and Attosecond Pulses in Imaging (Invited)

Boyang Li, Hushan Wang**, and Yuxi Fu*
Author Affiliations
  • Center for Attosecond Science and Technology, Xi’an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi’an 710049, Shaanxi , China
  • show less
    References(146)

    [2] Gabor N M, Zhong Z H, Bosnick K et al. Ultrafast photocurrent measurement of the escape time of electrons and holes from carbon nanotube p-i-n photodiodes[J]. Physical Review Letters, 108, 087404(2012).

    [3] Birkmeier K, Hertel T, Hartschuh A. Probing the ultrafast dynamics of excitons in single semiconducting carbon nanotubes[J]. Nature Communications, 13, 6290(2022).

    [6] Kriete B, Lüttig J, Kunsel T et al. Interplay between structural hierarchy and exciton diffusion in artificial light harvesting[J]. Nature Communications, 10, 4615(2019).

    [7] Stone K W, Gundogdu K, Turner D B et al. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells[J]. Science, 324, 1169-1173(2009).

    [8] You C L, Nellikka A C, De Leon I et al. Multiparticle quantum plasmonics[J]. Nanophotonics, 9, 1243-1269(2020).

    [9] Sun Y B, Yoon Y, Steger M et al. Direct measurement of polariton-polariton interaction strength[J]. Nature Physics, 13, 870-875(2017).

    [12] Gao J X, Lou Z Y, Yang F et al. High-energy high-order harmonic generation around 13 nm wavelength based on hundred-terawatt-level laser system[J]. Acta Optica Sinica, 44, 0214001(2024).

    [16] Schultze M, Ramasesha K, Pemmaraju C D et al. Attosecond band-gap dynamics in silicon[J]. Science, 346, 1348-1352(2014).

    [17] Ott C, Kaldun A, Argenti L et al. Reconstruction and control of a time-dependent two-electron wave packet[J]. Nature, 516, 374-378(2014).

    [21] Jordan I, Huppert M, Rattenbacher D et al. Attosecond spectroscopy of liquid water[J]. Science, 369, 974-979(2020).

    [22] Marroux H J B, Fidler A P, Ghosh A et al. Attosecond spectroscopy reveals alignment dependent core-hole dynamics in the ICl molecule[J]. Nature Communications, 11, 5810(2020).

    [26] Sun C, Lü P T, Kang B et al. Transient imaging based on pump-probe technique: advances and prospects[J]. Scientia Sinica Physica, Mechanica & Astronomica, 53, 114207(2023).

    [27] Grumstrup E M, Gabriel M M, Cating E E M et al. Pump–probe microscopy: Visualization and spectroscopy of ultrafast dynamics at the nanoscale[J]. Chemical Physics, 458, 30-40(2015).

    [28] Zhu Y F, Cheng J X. Transient absorption microscopy: Technological innovations and applications in materials science and life science[J]. The Journal of Chemical Physics, 152, 020901(2020).

    [29] Fischer M C, Wilson J W, Robles F E et al. Invited review article: pump-probe microscopy[J]. The Review of Scientific Instruments, 87, 031101(2016).

    [31] Walsh C P, Malizia J P, Sutton S C et al. Monolayer-like exciton recombination dynamics of multilayer MoSe2 observed by pump–probe microscopy[J]. Nano Letters, 24, 1431-1438(2024).

    [33] Segovia M, Xu X F. Ultrafast, high resolution spatiotemporal mapping of energy transport dynamics for determination of energy transport properties in silicon[J]. Physical Review B, 108, 125202(2023).

    [35] Son B H, Park J K, Hong J T et al. Imaging ultrafast carrier transport in nanoscale field-effect transistors[J]. ACS Nano, 8, 11361-11368(2014).

    [36] Gundlach L, Piotrowiak P. Femtosecond Kerr-gated wide-field fluorescence microscopy[J]. Optics Letters, 33, 992-994(2008).

    [37] Liebel M, Camargo F V A, Cerullo G et al. Ultrafast transient holographic microscopy[J]. Nano Letters, 21, 1666-1671(2021).

    [38] Ruzicka B A, Wang S, Werake L K et al. Hot carrier diffusion in graphene[J]. Physical Review B, 82, 195414(2010).

    [39] Gao B, Hartland G, Fang T et al. Studies of intrinsic hot phonon dynamics in suspended graphene by transient absorption microscopy[J]. Nano Letters, 11, 3184-3189(2011).

    [40] Shi H Y, Yan R S, Bertolazzi S et al. Exciton dynamics in suspended monolayer and few-layer MoS2 2D crystals[J]. ACS Nano, 7, 1072-1080(2013).

    [41] Zhao H, Mower M, Vignale G. Ambipolar spin diffusion and D’yakonov-Perel’ spin relaxation in GaAs quantum wells[J]. Physical Review B, 79, 115321(2009).

    [42] Yu J, Warren W S, Fischer M C. Visualization of vermilion degradation using pump-probe microscopy[J]. Science Advances, 5, eaaw3136(2019).

    [44] Keskinbora K, Grévent C, Bechtel M et al. Ion beam lithography for Fresnel zone plates in X-ray microscopy[J]. Optics Express, 21, 11747-11756(2013).

    [45] Niese S, Krüger P, Kubec A et al. Full-field X-ray microscopy with crossed partial multilayer Laue lenses[J]. Optics Express, 22, 20008-20013(2014).

    [46] Murray K T, Pedersen A F, Mohacsi I et al. Multilayer Laue lenses at high X-ray energies: performance and applications[J]. Optics Express, 27, 7120-7138(2019).

    [47] Artioukov I A, Vinogradov A V, Asadchikov V E et al. Schwarzschild soft-x-ray microscope for imaging of nonradiating objects[J]. Optics Letters, 20, 2451(1995).

    [48] Li Y R, Xie Q, Chen Z Q et al. Optical design of Wolter X-ray microscope for laser plasma diagnostics[J]. High Power Laser and Particle Beams, 30, 062002(2018).

    [49] Ohba A, Nakano T, Onoda S et al. Laboratory-size X-ray microscope using Wolter mirror optics and an electron-impact X-ray source[J]. The Review of Scientific Instruments, 92, 093704(2021).

    [51] Wieland M, Frueke R, Wilhein T et al. Submicron extreme ultraviolet imaging using high-harmonic radiation[J]. Applied Physics Letters, 81, 2520-2522(2002).

    [52] Wieland M, Spielmann C, Kleineberg U et al. Toward time-resolved soft X-ray microscopy using pulsed fs-high-harmonic radiation[J]. Ultramicroscopy, 102, 93-100(2005).

    [54] Jiang H D, Song C Y, Chen C C et al. Quantitative 3D imaging of whole, unstained cells by using X-ray diffraction microscopy[J]. Proceedings of the National Academy of Sciences of the United States of America, 107, 11234-11239(2010).

    [55] Miao J W, Hodgson K O, Ishikawa T et al. Imaging whole Escherichia coli bacteria by using single-particle X-ray diffraction[J]. Proceedings of the National Academy of Sciences of the United States of America, 100, 110-112(2003).

    [58] Marvin Seibert M, Boutet S, Svenda M et al. Femtosecond diffractive imaging of biological cells[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 43, 194015(2010).

    [59] Song C Y, Jiang H D, Mancuso A et al. Quantitative imaging of single, unstained viruses with coherent x rays[J]. Physical Review Letters, 101, 158101(2008).

    [60] Seibert M M, Ekeberg T, Maia F R N C et al. Single mimivirus particles intercepted and imaged with an X-ray laser[J]. Nature, 470, 78-81(2011).

    [61] Jiang H D, Xu R, Chen C C et al. Three-dimensional coherent X-ray diffraction imaging of molten iron in mantle olivine at nanoscale resolution[J]. Physical Review Letters, 110, 205501(2013).

    [62] Pryor A, Rana A, Xu R et al. Single-shot 3D coherent diffractive imaging of core-shell nanoparticles with elemental specificity[J]. Scientific Reports, 8, 8284(2018).

    [63] Xu R, Jiang H D, Song C Y et al. Single-shot three-dimensional structure determination of nanocrystals with femtosecond X-ray free-electron laser pulses[J]. Nature Communications, 5, 4061(2014).

    [66] Marchesini S. Invited Article: a unified evaluation of iterative projection algorithms for phase retrieval[J]. Review of Scientific Instruments, 78, 011301(2007).

    [67] Marchesini S, He H, Chapman H N et al. X-ray image reconstruction from a diffraction pattern alone[J]. Physical Review B, 68, 140101(2003).

    [73] Raines K S, Salha S, Sandberg R L et al. Three-dimensional structure determination from a single view[J]. Nature, 463, 214-217(2010).

    [75] Zayko S, Mönnich E, Sivis M et al. Coherent diffractive imaging beyond the projection approximation: waveguiding at extreme ultraviolet wavelengths[J]. Optics Express, 23, 19911-19921(2015).

    [76] Zayko S, Sivis M, Schäfer S et al. Polarization contrast of nanoscale waveguides in high harmonic imaging[J]. Optica, 3, 239-242(2016).

    [77] Mustafi S, Latychevskaia T. Fourier transform holography: a lensless imaging technique, its principles and applications[J]. Photonics, 10, 153(2023).

    [78] Guizar-Sicairos M, Fienup J R. Direct image reconstruction from a Fourier intensity pattern using HERALDO[J]. Optics Letters, 33, 2668-2670(2008).

    [79] Marchesini S, Boutet S, Sakdinawat A E et al. Massively parallel X-ray holography[J]. Nature Photonics, 2, 560-563(2008).

    [80] Martin A V, D’Alfonso A J, Wang F Let al. X-ray holography with a customizable reference[J]. Nature Communications, 5, 4661(2014).

    [82] Kfir O, Zayko S, Nolte C et al. Nanoscale magnetic imaging using circularly polarized high-harmonic radiation[J]. Science Advances, 3, eaao4641(2017).

    [83] Zayko S, Kfir O, Heigl M et al. Ultrafast high-harmonic nanoscopy of magnetization dynamics[J]. Nature Communications, 12, 6337(2021).

    [85] Treacher D J, Lloyd D T, Wiegandt F et al. Optimised XUV holography using spatially shaped high harmonic beams[J]. Optics Express, 27, 29016-29025(2019).

    [92] Konijnenberg S. An introduction to the theory of ptychographic phase retrieval methods[J]. Advanced Optical Technologies, 6, 423-438(2017).

    [93] Künzel S, Williams G O, Boutu W et al. Shot-to-shot intensity and wavefront stability of high-harmonic generation[J]. Applied Optics, 54, 4745-4749(2015).

    [95] Odstrcil M, Baksh P, Boden S A et al. Ptychographic coherent diffractive imaging with orthogonal probe relaxation[J]. Optics Express, 24, 8360-8369(2016).

    [98] Kharitonov K, Mehrjoo M, Ruiz-Lopez M et al. Single-shot ptychography at a soft X-ray free-electron laser[J]. Scientific Reports, 12, 14430(2022).

    [99] Gardner D F, Tanksalvala M, Shanblatt E R et al. Subwavelength coherent imaging of periodic samples using a 13.5 nm tabletop high-harmonic light source[J]. Nature Photonics, 11, 259-263(2017).

    [101] Adams D E, Zhang B S, Seaberg M D et al. Tabletop nanometer extreme ultraviolet imaging in an extended reflection geometery[C], LW1H.4(2014).

    [102] Karl R M, Mancini G F, Knobloch J L et al. Full-field imaging of thermal and acoustic dynamics in an individual nanostructure using tabletop high harmonic beams[J]. Science Advances, 4, eaau4295(2018).

    [104] Lu H Y, Odstrčil M, Pooley C et al. Characterisation of engineered defects in extreme ultraviolet mirror substrates using lab-scale extreme ultraviolet reflection ptychography[J]. Ultramicroscopy, 249, 113720(2023).

    [106] Jones M W M, Elgass K, Junker M D et al. Mapping biological composition through quantitative phase and absorption X-ray ptychography[J]. Scientific Reports, 4, 6796(2014).

    [107] Eschen W, Loetgering L, Schuster V et al. Material-specific high-resolution table-top extreme ultraviolet microscopy[J]. Light: Science & Applications, 11, 117(2022).

    [109] Wang B, Brooks N J, Johnsen P et al. High-fidelity ptychographic imaging of highly periodic structures enabled by vortex high harmonic beams[J]. Optica, 10, 1245-1252(2023).

    [111] Wang L, Bai G R, Wang X W et al. Raman time-delay in attosecond transient absorption of strong-field created krypton vacancy[J]. Nature Communications, 15, 2705(2024).

    [112] Ikeura-Sekiguchi H, Sekiguchi T. Attosecond electron delocalization in the conduction band through the phosphate backbone of genomic DNA[J]. Physical Review Letters, 99, 228102(2007).

    [113] Månsson E P, Latini S, Covito F et al. Real-time observation of a correlation-driven sub 3 fs charge migration in ionised adenine[J]. Communications Chemistry, 4, 73(2021).

    [114] Månsson E P, De Camillis S, Castrovilli M C et al. Ultrafast dynamics in the DNA building blocks thymidine and thymine initiated by ionizing radiation[J]. Physical Chemistry Chemical Physics, 19, 19815-19821(2017).

    [115] Ihm Y, Cho D H, Sung D et al. Direct observation of picosecond melting and disintegration of metallic nanoparticles[J]. Nature Communications, 10, 2411(2019).

    [116] Chapman H N, Barty A, Bogan M J et al. Femtosecond diffractive imaging with a soft-X-ray free-electron laser[J]. Nature Physics, 2, 839-843(2006).

    [120] Malm E, Wikmark H, Pfau B et al. Singleshot polychromatic coherent diffractive imaging with a high-order harmonic source[J]. Optics Express, 28, 394-404(2020).

    [121] Dilanian R A, Chen B, Williams G J et al. Diffractive imaging using a polychromatic high-harmonic generation soft-x-ray source[J]. Journal of Applied Physics, 106, 023110(2009).

    [122] Witte S, Tenner V T, Noom D W et al. Lensless diffractive imaging with ultra-broadband table-top sources: from infrared to extreme-ultraviolet wavelengths[J]. Light: Science & Applications, 3, e163(2014).

    [123] Lin H X, Xu W H, Zhao J T et al. Broadband coherent modulation imaging with no knowledge of the illumination spectrum distribution[J]. Optics Letters, 48, 3977-3980(2023).

    [126] Pan X C, Liu C, Zhu J Q. Iterative convergence and reconstruction uniqueness of coherent modulation imaging[J]. Acta Optica Sinica, 40, 1811001(2020).

    [127] Nugent K A. Coherent methods in the X-ray sciences[J]. Advances in Physics, 59, 1-99(2010).

    [128] Xiangli B, Lü Q B, Cai Q S et al. Fourier transform imaging spectroscopy[J]. Scientia Sinica Informationis, 50, 1462-1474(2020).

    [129] Eschen W, Wang S C, Liu C et al. Towards attosecond imaging at the nanoscale using broadband holography-assisted coherent imaging in the extreme ultraviolet[J]. Communications Physics, 4, 154(2021).

    [132] Rana A, Zhang J H, Pham M et al. Potential of attosecond coherent diffractive imaging[J]. Physical Review Letters, 125, 086101(2020).

    [133] Egawa S, Motoyama H, Iwasaki A et al. Single-shot achromatic imaging for broadband soft X-ray pulses[J]. Optics Letters, 45, 515-518(2020).

    [140] Chen Z Y, Zheng S M, Tong Z S et al. Physics-driven deep learning enables temporal compressive coherent diffraction imaging[J]. Optica, 9, 677-680(2022).

    [143] Liang K K, Bi L Y, Zhu Q Y et al. Ultrafast dynamics revealed with time-resolved scanning tunneling microscopy: a review[J]. ACS Applied Optical Materials, 1, 924-938(2023).

    [144] Alcorn F M, Jain P K, van der Veen R M. Time-resolved transmission electron microscopy for nanoscale chemical dynamics[J]. Nature Reviews. Chemistry, 7, 256-272(2023).

    Tools

    Get Citation

    Copy Citation Text

    Boyang Li, Hushan Wang, Yuxi Fu. Applications and Prospects of High Harmonics and Attosecond Pulses in Imaging (Invited)[J]. Acta Optica Sinica, 2024, 44(17): 1732003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Ultrafast Optics

    Received: Jul. 25, 2024

    Accepted: Aug. 22, 2024

    Published Online: Sep. 11, 2024

    The Author Email: Wang Hushan (wanghs@opt.ac.cn), Fu Yuxi (fuyuxi@opt.ac.cn)

    DOI:10.3788/AOS241362

    CSTR:32393.14.AOS241362

    Topics