Journal of Quantum Optics, Volume. 29, Issue 3, 30103(2023)

The Dynamics of Entropic Uncertainty Relation, Quantum Discord and Dense Coding Capacity in the Hierarchical Environment

MA Jing and LI Jun-qi
Author Affiliations
  • [in Chinese]
  • show less
    References(41)

    [1] [1] CHIEW S H, GESSNER M. Improving sum uncertainty relations with the quantum Fisher information [J]. Phys Rev Res, 2022, 4:013076. DOI: 10.1103/PhysRevResearch.4.013076.

    [2] [2] ZHENG X, MA S Q, ZHANG G F, et al. Unified and Exact Framework for Variance-Based Uncertainty Relations[J]. Sci Rep, 2020, 10:150. DOI: 10.1038/s41598-019-56803-2.

    [3] [3] COLES P J, BERTA M, TOMAMICHEL M, et al. Entropic uncertainty relations and their applications[J]. Rev Mod Phys, 2017, 89:015002. DOI: 10.1103/RevModPhys.89.015002.

    [4] [4] WU L, YE L, WANG D. Tighter generalized entropic uncertainty relations in multipartite systems[J]. Phys Rev A, 2022, 106:062219. DOI: 10.1103/PhysRevA.106.062219.

    [5] [5] BERTA M, CHRISTANDL M, COLBECK R, et al. The uncertainty principle in the presence of quantum memory[J]. Nat Phys, 2010, 6:659. DOI: 10.1038/nphys1734.

    [6] [6] DOLATKHAH H, MOHAMMADI A, HASELI S. The tripartite quantum-memory-assisted entropic uncertainty relation and upper bound on shareability of quantum discord[J]. Sci Rep, 2022, 12:4101. DOI: 10.1038/s41598-022-08098-z.

    [7] [7] HU M L, FAN H. Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation[J]. Phys Rev A, 2013, 87:022314. DOI: 10.1103/PhysRevA.87.022314.

    [8] [8] PREVEDEL R, HAMEL D R, COLBECK R, et al. Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement[J]. Nat Phys, 2011, 7:757. DOI: 10.1038/nphys2048.

    [9] [9] COLES P J, PIANI M. Improved entropic uncertainty relations and information exclusion relations[J]. Phys Rev A, 2014, 89:022112. DOI: 10.1103/PhysRevA.89.022112.

    [10] [10] DOLATKHAH H, HADDADI S, HASELI S, et al. Tripartite quantum-memory-assisted entropic uncertainty relations for multiple measurements[J]. Eur Phys J Plus, 2022, 137:1163. DOI: 10.1140/epjp/s13360-022-03374-3.

    [11] [11] BERGH B, GAERTTNER M. Entanglement detection in quantum many-body systems using entropic uncertainty relations[J]. Phys Rev A, 2021, 103:052412. DOI: 10.1103/PhysRevA.103.052412.

    [12] [12] TOMAMICHEL M, LIM C C W, GISIN N, et al. Tight finite-key analysis for quantum cryptography[J]. Nat Commun, 2012, 3:634. DOI: 10.1038/ncomms1631.

    [13] [13] SCHNEELOCH J, BROADBENT C J, HOWELL J C. Improving Einstein-Podolsky-Rosen steering inequalities with state information[J]. Phys Lett A, 2014, 378:766. DOI: 10.1016/j.physleta.2014.01.019.

    [14] [14] OLLIVIER H, ZUREK W H. Quantum discord: A measure of the quantumness of correlations [J]. Phys Rev Lett, 2002, 88:017901. DOI: 10.1103/PhysRevLett.88.017901.

    [15] [15] FU Y, LIU W Q, YE X Y, et al. Experimental Investigation of Quantum Correlations in a Two-Qutrit Spin System[J]. Phys Rev Lett, 2022, 129:100501. DOI: 10.1103/PhysRevLett.129.100501.

    [16] [16] MODI K, BRODUTCH A, CABLE H, et al. The classical-quantum boundary for correlations: Discord and related measures[J]. Rev Mod Phys, 2012, 84:1655. DOI: 10.1103/RevModPhys.84.1655.

    [17] [17] BENNETT C H, WIESNER S J. Communication via one-particle and 2-particle operators on einstein-podolsky-rosen states[J]. Phys Rev Lett, 1992, 69:2881. DOI: 10.1103/PhysRevLett.69.2881.

    [18] [18] PIVETEAU A, PAUWELS J, HAKANSSON E, et al. Entanglement-assisted quantum communication with simple measurements[J]. Nat Commun, 2022, 13:7878. DOI: 10.1038/s41467-022-33922-5.

    [19] [19] DOLATKHAH H, HADDADI S, HU M L, et al. Characterizing tripartite entropic uncertainty under random telegraph noise[J]. Quantum Inf Process, 2022, 21:356. DOI: 10.1007/s11128-022-03704-5.

    [20] [20] POURKARIMI M R, HASELI S, HADDADI S, et al. Scrutinizing entropic uncertainty and quantum discord in an open system under quantum critical environment[J]. Laser Phys Lett, 2022, 19:065201. DOI: 10.1088/1612-202X/ac6c2f.

    [21] [21] RAHMAN A U, ZIDAN N, ZANGI S M, et al. Quantum memory-assisted entropic uncertainty and entanglement dynamics: two qubits coupled with local fields and Ornstein Uhlenbeck noise[J]. Quantum Inf Process, 2022, 21:354. DOI: 10.1007/s11128-022-03703-6.

    [22] [22] SHI J, DING Z, WU T, et al. Entanglement witness via quantum-memory-assisted entropic uncertainty relation[J]. Laser Phys Lett, 2017, 14:125208. DOI: 10.1088/1612-202X/aa82a0.

    [23] [23] POURKARIMI M R, HASELI S, HADDADI S, et al. Scrutinizing entropic uncertainty and quantum discord in an open system under quantum critical environment[J]. Laser Phys Lett, 2022, 19:065201. DOI: 10.1088/1612-202X/ac6c2f.

    [24] [24] LI B, FENG L, SHI J, et al. Quantum-memory-assisted entropic uncertainty and quantum correlation in structured reservoir[J]. Laser Phys Lett, 2023, 20:025201. DOI: 10.1088/1612-202X/acaea2.

    [25] [25] ABD-RABBOU M Y, KHALIL E M. Dense Coding and Quantum Memory Assisted Entropic Uncertainty Relations in a Two-Qubit State Influenced by Dipole and Symmetric Cross Interactions[J]. Ann Phys, 2022, 534:2200204. DOI: 10.1002/andp.202200204.

    [26] [26] HADDADI S, HU M L, KHEDIF Y. Measurement uncertainty and dense coding in a two-qubit system: Combined effects of bosonic reservoir and dipole-dipole interaction[J]. Results Phys, 2022, 32:105041. DOI: 10.1016/j.rinp.2021.105041.

    [27] [27] GUO Y, LIU B H, LI C F, et al. Advances in Quantum Dense Coding[J]. Adv Quantum Technol, 2019, 2:1900011. DOI: 10.1002/qute.201900011.

    [28] [28] HAYASHI M, WANG K. Dense Coding with Locality Restriction on Decoders: Quantum Encoders versus Superquantum Encoders[J]. Prx Quantum, 2022, 3:030346. DOI: 10.1103/PRXQuantum.3.030346.

    [29] [29] CHEN Q, XU J B. Enhancement of the Quantum Coherence of the Rydberg Atoms System by Weak Measurement[J]. Ann Phys, 2021, 533:2000463. DOI: 10.1002/andp.202000463.

    [30] [30] LI J Q, BAI L, LIANG J Q. Entropic uncertainty relation under multiple bosonic reservoirs with filtering operator[J]. Quantum Inf Process, 2018, 17:206. DOI: 10.1007/s11128-018-1973-z.

    [31] [31] MOJAVERI B, DEHGHANI A, TAGHIPOUR J. Control of entanglement, single excited-state population and memory-assisted entropic uncertainty of two qubits moving in a cavity by using a classical driving field[J]. Eur Phys J Plus, 2022, 137:1065. DOI: 10.1140/epjp/s13360-022-03230-4.

    [32] [32] YU M, FANG M F. Controlling the quantum-memory-assisted entropic uncertainty relation by quantum-jump-based feedback control in dissipative environments[J]. Quantum Inf Process, 2017, 16:213. DOI: 10.1007/s11128-017-1666-z.

    [33] [33] PLA J J, TAN K Y, DEHOLLAIN J P, et al. A single-atom electron spin qubit in silicon[J]. Nature, 2012, 489:541. DOI: 10.1038/nature11449.

    [34] [34] SONG Y, LI J Q, LIANG J Q. Dynamics of quantum correlation for three qubits in hierarchical environment[J]. Acta Phys Sin, 2021, 70:100301. DOI: 10.7498/aps.70.20202133.

    [35] [35] XU K, LI H G, LI Z G, et al. Charging performance of quantum batteries in a double-layer environment[J]. Phys Rev A, 2022, 106:012425. DOI: 10.1103/PhysRevA.106.012425.

    [36] [36] XU X X, HU M L. Maximal Steered Coherence and Its Conversion to Entanglement in Multiple Bosonic Reservoirs[J]. Ann Phys, 2022, 534:2100412. DOI: 10.1002/andp.202100412.

    [37] [37] ADABI F, SALIMI S, HASELI S. Tightening the entropic uncertainty bound in the presence of quantum memory[J]. Phys Rev A, 2016, 93:062123. DOI: 10.1103/PhysRevA.93.062123.

    [38] [38] MA T, CHEN Y, CHEN T, et al. Crossover between non-Markovian and Markovian dynamics induced by a hierarchical environment[J]. Phys Rev A, 2014, 90:042108. DOI: 10.1103/PhysRevA.90.042108.

    [39] [39] BREUER H P, PETRUCCIONE F. The Theory of Open Quantum Systems[M]. New York: Oxford University Press, 2002.

    [40] [40] BELLOMO B, LO FRANCO R, COMPAGNO G. Non-Markovian effects on the dynamics of entanglement[J]. Phys Rev Lett, 2007, 99:160502. DOI: 10.1103/PhysRevLett.99.160502.

    [41] [41] WANG C Z, LI C X, NIE L Y, et al. Classical correlation and quantum discord mediated by cavity in two coupled qubits[J]. J Phys B, 2011, 44:015503. DOI: 10.1088/0953-4075/44/1/015503.

    Tools

    Get Citation

    Copy Citation Text

    MA Jing, LI Jun-qi. The Dynamics of Entropic Uncertainty Relation, Quantum Discord and Dense Coding Capacity in the Hierarchical Environment[J]. Journal of Quantum Optics, 2023, 29(3): 30103

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Received: Mar. 24, 2023

    Accepted: --

    Published Online: Apr. 7, 2024

    The Author Email:

    DOI:10.3788/jqo20232903.0103

    Topics