Photonics Research, Volume. 10, Issue 6, 1344(2022)
3D printing of optical materials by processes based on photopolymerization: materials, technologies, and recent advances
[1] S. C. Ligon, R. Liska, J. Stampfl, M. Gurr, R. Mülhaupt. Polymers for 3D printing and customized additive manufacturing. Chem. Rev., 117, 10212-10290(2017).
[2] M. Kalender, S. E. Kılıç, S. Ersoy, Y. Bozkurt, S. Salman. Additive manufacturing and 3D printer technology in aerospace industry. 9th International Conference on Recent Advances in Space Technologies (RAST), 689-694(2019).
[3] R. Leal, F. M. Barreiros, L. Alves, F. Romeiro, J. C. Vasco, M. Santos, C. Marto. Additive manufacturing tooling for the automotive industry. Int. J. Adv. Manuf. Technol., 92, 1671-1676(2017).
[4] W. K. Durfee, P. A. Iaizzo. Medical applications of 3D printing. Engineering in Medicine, 527-543(2019).
[5] J. Sun, W. Zhou, J. Y. H. Fuh, G. S. Hong. An overview of 3D printing technologies for food fabrication. Food Bioprocess Technol., 8, 1605-1615(2015).
[6] G. Wang, X. Zhu, J. Wu, J. Zhu, X. Chen, Z. Cheng. Synthesis and photoinduced surface-relief grating of well-defined azo-containing polymethacrylates via atom transfer radical polymerization. J. Appl. Polym. Sci., 106, 1234-1242(2007).
[7] Y. Zhang, W. Zhang, X. Chen, Z. Cheng, J. Wu, J. Zhu, X. Zhu. Synthesis of novel three-arm star azo side-chain liquid crystalline polymer via ATRP and photoinduced surface relief gratings. J. Polym. Sci. A, 46, 777-789(2008).
[8] S. Jradi, O. Soppera, D. J. Lougnot. Fabrication of polymer waveguides between two optical fibers using spatially controlled light-induced polymerization. Appl. Opt., 47, 3987-3993(2008).
[9] M. Sangermano, B. Voit, F. Sordo, K.-J. Eichhorn, G. Rizza. High refractive index transparent coatings obtained via UV/thermal dual-cure process. Polymer, 49, 2018-2022(2008).
[10] A. Nebioglu, J. A. Leon, I. V. Khudyakov. New UV-curable high refractive index oligomers. Ind. Eng. Chem. Res., 47, 2155-2159(2008).
[11] S. Murase, K. Kinoshita, K. Horie, S. Morino. Photo-optical control with large refractive index changes by photodimerization of poly(vinyl cinnamate) film. Macromolecules, 30, 8088-8090(1997).
[12] L. V. Natarajan, D. P. Brown, J. M. Wofford, V. P. Tondiglia, R. L. Sutherland, P. F. Lloyd, T. J. Bunning. Holographic polymer dispersed liquid crystal reflection gratings formed by visible light initiated thiol-ene photopolymerization. Polymer, 47, 4411-4420(2006).
[13] S. H. Cho, F. S. Tsai, W. Qiao, N.-H. Kim, Y.-H. Lo. Fabrication of aspherical polymer lenses using a tunable liquid-filled mold. Opt. Lett., 34, 605-607(2009).
[14] C. Zimmerman, M. White, M.-E. Baylor. Effects of varying interfacial surface tension on macroscopic polymer lenses. Opt. Eng., 54, 097108(2015).
[15] R. Malallah, H. Li, D. P. Kelly, J. J. Healy, J. T. Sheridan. A review of hologram storage and self-written waveguides formation in photopolymer media. Polymers, 9, 337(2017).
[16] B. Kowalski, R. R. Mcleod. Design concepts for diffusive holographic photopolymers. J. Polym. Sci. B, 54, 1021-1035(2016).
[17] B. Steyrer, P. Neubauer, R. Liska, J. Stampfl. Visible light photoinitiator for 3D-printing of tough methacrylate resins. Materials, 10, 1445(2017).
[18] J.-P. Fouassier, J. Lalevée. Photoinitiators for Polymer Synthesis: Scope, Reactivity and Efficiency(2012).
[19] J. Fouassier. Photoinitiation, Photopolymerization, and Photocuring: Fundamentals and Applications(1996).
[20] L. U. Kim, J. W. Kim, C. K. Kim. Effects of molecular structure of the resins on the volumetric shrinkage and the mechanical strength of dental restorative composites. Biomacromolecules, 7, 2680-2687(2006).
[21] M. Höfer, N. Moszner, R. Liska. Oxygen scavengers and sensitizers for reduced oxygen inhibition in radical photopolymerization. J. Polym. Sci. A, 46, 6916-6927(2008).
[22] R. Li, F. J. Schork. Modeling of the inhibition mechanism of acrylic acid polymerization. Ind. Eng. Chem. Res., 45, 3001-3008(2006).
[23] C. Croutxé-Barghorn, O. Soppera, L. Simonin, D. Lougnot. On the unexpected role of oxygen in the generation of microlens arrays with self-developing photopolymers. Adv. Mater. Opt. Electron., 10, 25-38(2000).
[24] I. Dika, F. Diot, V. Bardinal, J.-P. Malval, C. Ecoffet, A. Bruyant, D. Barat, B. Reig, J.-B. Doucet, T. Camps, O. Soppera. Near infrared photopolymer for micro-optics applications. J. Polym. Sci., 58, 1796-1809(2020).
[25] A. Khitous, C.-F. Lin, F. Kameche, H.-W. Zan, J.-P. Malval, D. Berling, O. Soppera. Plasmonic Au nanoparticle arrays for monitoring photopolymerization at the nanoscale. ACS Appl. Nano Mater., 4, 8770-8780(2021).
[26] C. Deeb, C. Ecoffet, R. Bachelot, J. Plain, A. Bouhelier, O. Soppera. Plasmon-based free-radical photopolymerization: effect of diffusion on nanolithography processes. J. Am. Chem. Soc., 133, 10535-10542(2011).
[27] C. Deeb, X. Zhou, D. Gérard, A. Bouhelier, P. K. Jain, J. Plain, O. Soppera, P. Royer, R. Bachelot. Off-resonant optical excitation of gold nanorods: nanoscale imprint of polarization surface charge distribution. J. Phys. Chem. Lett., 2, 7-11(2011).
[28] F. Kameche, W. Heni, S. Telitel, L. Vidal, S. Marguet, L. Douillard, C. Fiorini-Debuisschert, R. Bachelot, O. Soppera. Probing plasmon-induced chemical mechanisms by free-radical nanophotopolymerization. J. Phys. Chem. C, 125, 8719-8731(2021).
[29] F. Kameche, W. Heni, S. Telitel, D. Ge, L. Vidal, F. Dumur, D. Gigmes, J. Lalevée, S. Marguet, L. Douillard, C. Fiorini-Debuisschert, R. Bachelot, O. Soppera. Plasmon-triggered living photopolymerization for elaboration of hybrid polymer/metal nanoparticles. Mater. Today, 40, 38-47(2020).
[30] M. Sahin, S. Ayalur-Karunakaran, J. Manhart, M. Wolfahrt, W. Kern, S. Schlögl. Thiol-Ene versus binary thiol-acrylate chemistry: material properties and network characteristics of photopolymers. Adv. Eng. Mater., 19, 1600620(2017).
[31] H. B. Song, A. Baranek, B. Worrell, W. D. Cook, C. N. Bowman. Photopolymerized triazole-based glassy polymer networks with superior tensile toughness. Adv. Funct. Mater., 28, 1801095(2018).
[32] T. J. McKenzie, P. S. Heaton, K. Rishi, R. Kumar, T. Brunet, G. Beaucage, O. Mondain-Monval, N. Ayres. Storage moduli and porosity of soft PDMS PolyMIPEs can be controlled independently using thiol–ene click chemistry. Macromolecules, 53, 3719-3727(2020).
[33] C. E. Hoyle, T. Y. Lee, T. Roper. Thiol–enes: chemistry of the past with promise for the future. J. Polym. Sci. A, 42, 5301-5338(2004).
[34] C. E. Hoyle, C. N. Bowman. Thiol-ene click chemistry. Angew. Chem. Int. Ed., 49, 1540-1573(2010).
[35] H. Lu, J. A. Carioscia, J. W. Stansbury, C. N. Bowman. Investigations of step-growth thiol-ene polymerizations for novel dental restoratives. Dental Mater., 21, 1129-1136(2005).
[36] C. C. Cook, E. J. Fong, J. J. Schwartz, D. H. Porcincula, A. C. Kaczmarek, J. S. Oakdale, B. D. Moran, K. M. Champley, C. M. Rackson, A. Muralidharan, R. R. Mcleod, M. Shusteff. Highly tunable thiol-ene photoresins for volumetric additive manufacturing. Adv. Mater., 32, 2003376(2020).
[37] M. Lecompère, X. Allonas, D. Maréchal, A. Criqui. Versatility of pyrylium salt/vinyl ether initiating system for epoxide dual-cure polymerization: kick-starting effect of the coinitiator. Macromol. Rapid Commun., 38, 1600660(2017).
[38] M. Sangermano, N. Razza, J. V. Crivello. Cationic UV-curing: technology and applications. Macromol. Mater. Eng., 299, 775-793(2014).
[39] F. Petko, M. Galek, E. Hola, R. Popielarz, J. Ortyl. One-component cationic photoinitiators from tunable benzylidene scaffolds for 3D printing applications. Macromolecules, 54, 7070-7087(2021).
[40] J.-D. Cho, J.-W. Hong. UV-initiated free radical and cationic photopolymerizations of acrylate/epoxide and acrylate/vinyl ether hybrid systems with and without photosensitizer. J. Appl. Polym. Sci., 93, 1473-1483(2004).
[41] J. V. Crivello. Hybrid free radical/cationic frontal photopolymerizations. J. Polym. Sci. A, 45, 4331-4340(2007).
[42] L. Chikh, V. Delhorbe, O. Fichet. (Semi-)Interpenetrating polymer networks as fuel cell membranes. J. Membr. Sci., 368, 1-17(2011).
[43] J. W. Kopatz, J. Unangst, A. W. Cook, L. N. Appelhans. Compositional effects on cure kinetics, mechanical properties and printability of dual-cure epoxy/acrylate resins for DIW additive manufacturing. Addit. Manuf., 46, 102159(2021).
[44] W. Kang, Z. Hong, R. Liang. 3D printing optics with hybrid material. Appl. Opt., 60, 1809-1813(2021).
[45] K. Studer, C. Decker, E. Beck, R. Schwalm, N. Gruber. Redox and photoinitiated crosslinking polymerization. I. Dual-cure isocyanate-acrylate system. Prog. Org. Coatings, 53, 126-133(2005).
[46] C. Decker, F. Masson, R. Schwalm. Dual-curing of waterborne urethane-acrylate coatings by UV and thermal processing. Macromol. Mater. Eng., 288, 17-28(2003).
[47] A. M. Uzcategui, A. Muralidharan, V. L. Ferguson, S. J. Bryant, R. R. Mcleod. Understanding and improving mechanical properties in 3D printed parts using a dual-cure acrylate-based resin for stereolithography. Adv. Eng. Mater., 20, 1800876(2018).
[48] C. Sanchez, B. Lebeau, F. Chaput, J.-P. Boilot. Optical properties of functional hybrid organic–inorganic nanocomposites. Adv. Mater., 15, 1969-1994(2003).
[49] I. Cooperstein, E. Sachyani-Keneth, E. Shukrun-Farrell, T. Rosental, X. Wang, A. Kamyshny, S. Magdassi. Hybrid materials for functional 3D printing. Adv. Mater. Interfaces, 5, 1800996(2018).
[50] E. Shukrun, I. Cooperstein, S. Magdassi. 3D-printed organic–ceramic complex hybrid structures with high silica content. Adv. Sci., 5, 1800061(2018).
[51] F. Kotz, K. Arnold, W. Bauer, D. Schild, N. Keller, K. Sachsenheimer, T. M. Nargang, C. Richter, D. Helmer, B. E. Rapp. Three-dimensional printing of transparent fused silica glass. Nature, 544, 337-339(2017).
[52] P. Judeinstein, C. Sanchez. Hybrid organic-inorganic materials: a land of multidisciplinarity. J. Mater. Chem., 6, 511-525(1996).
[53] K.-H. Haas. Hybrid inorganic–organic polymers based on organically modified Si-alkoxides. Adv. Eng. Mater., 2, 571-582(2000).
[54] O. Soppera, C. Croutxé-Barghorn. Real-time Fourier transform infrared study of the free-radical ultraviolet-induced polymerization of a hybrid sol–gel. II. The effect of physicochemical parameters on the photopolymerization kinetics. J. Polym. Sci. A, 41, 831-840(2003).
[55] O. Soppera, C. Croutxé-Barghorn. Real-time Fourier transform infrared study of free-radical UV-induced polymerization of hybrid sol–gel. I. Effect of silicate backbone on photopolymerization kinetics. J. Polym. Sci. A, 41, 716-724(2003).
[56] O. Soppera, C. Croutxé-Barghorn, D. J. Lougnot. New insights into photoinduced processes in hybrid sol–gel glasses containing modified titanium alkoxides. New J. Chem., 25, 1006-1014(2001).
[57] D. Blanc, S. Pelissier, K. Saravanamuttu, S. I. Najafi, M. P. Andrews. Self-processing of surface-relief gratings in photosensitive hybrid sol-gel glasses. Adv. Mater., 11, 1508-1511(1999).
[58] C.-C. Yeh, H.-C. Liu, M.-Y. Chuang, J. Denzer, D. Berling, H.-W. Zan, O. Soppera. Controllable formation of zinc oxide micro- and nanostructures via DUV direct patterning. Adv. Mater. Interfaces, 3, 1600373(2016).
[59] H.-C. Lin, F. Stehlin, O. Soppera, H.-W. Zan, C.-H. Li, F. Wieder, A. Ponche, D. Berling, B.-H. Yeh, K.-H. Wang. Deep ultraviolet laser direct write for patterning sol-gel InGaZnO semiconducting micro/nanowires and improving field-effect mobility. Sci. Rep., 5, 10490(2014).
[60] F. Stehlin, F. Wieder, A. Spangenberg, J.-M. Meins, O. Soppera. Room-temperature preparation of metal-oxide nanostructures by DUV lithography from metal-oxo clusters. J. Mater. Chem. C, 2, 277-285(2013).
[61] F. Stehlin, Y. Bourgin, A. Spangenberg, Y. Jourlin, O. Parriaux, S. Reynaud, F. Wieder, O. Soppera. Direct nanopatterning of 100 nm metal oxide periodic structures by Deep-UV immersion lithography. Opt. Lett., 37, 4651-4653(2012).
[62] P.-Y. Chang, C.-F. Lin, S. El Khoury Rouphael, H. Hsuan, C.-M. Wu, D. Berling, P.-H. Yeh, C.-J. Lu, H.-F. Meng, H.-W. Zan, O. Soppera. Near-infrared laser-annealed IZO flexible device as a sensitive H2S sensor at room temperature. ACS Appl. Mater. Interfaces, 12, 24984-24991(2020).
[63] S.-Y. Yu, G. Schrodj, K. Mougin, J. Dentzer, J.-P. Malval, H.-W. Zan, O. Soppera, A. Spangenberg. Direct laser writing of crystallized TiO2 and TiO2/carbon microstructures with tunable conductive properties. Adv. Mater., 30, 1805093(2018).
[64] C.-C. Yeh, H.-W. Zan, O. Soppera. Solution-based micro- and nanoscale metal oxide structures formed by direct patterning for electro-optical applications. Adv. Mater., 30, 1800923(2018).
[65] J. Serbin, A. Egbert, A. Ostendorf, B. N. Chichkov, R. Houbertz, G. Domann, J. Schulz, C. Cronauer, L. Fröhlich, M. Popall. Femtosecond laser-induced two-photon polymerization of inorganic–organic hybrid materials for applications in photonics. Opt. Lett., 28, 301-303(2003).
[66] A. Ovsianikov, J. Viertl, B. Chichkov, M. Oubaha, B. MacCraith, I. Sakellari, A. Giakoumaki, D. Gray, M. Vamvakaki, M. Farsari, C. Fotakis. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano, 2, 2257-2262(2008).
[67] J.-C. Andre, A. Le Mehaute, O. De Witte. Dispositif pour réaliser un modèle de pièce industrielle. U.S. patent(1986).
[68] C. Hull. Apparatus for production of three-dimensional objects by stereolithography. U.S. patent(1986).
[69] B. Liu, X. Gong, W. J. Chappell. Applications of layer-by-layer polymer stereolithography for three-dimensional high-frequency components. IEEE Trans. Microwave Theory Tech., 52, 2567-2575(2004).
[70] B. C. Gross, J. L. Erkal, S. Y. Lockwood, C. Chen, D. M. Spence. Evaluation of 3D printing and its potential impact on biotechnology and the chemical sciences. Anal. Chem., 86, 3240-3253(2014).
[72] J. Maas, B. Liu, S. Hajela, Y. Huang, X. Gong, W. J. Chappell. Laser-based layer-by-layer polymer stereolithography for high-frequency applications. Proc. IEEE, 105, 645-654(2017).
[73] A. Bertsch, P. Bernhard, C. Vogt, P. Renaud. Rapid prototyping of small size objects. Rapid Prototyping J., 6, 259-266(2000).
[74] J. Stampfl, S. Baudis, C. Heller, R. Liska, A. Neumeister, R. Kling, A. Ostendorf, M. Spitzbart. Photopolymers with tunable mechanical properties processed by laser-based high-resolution stereolithography. J. Micromech. Microeng., 18, 125014(2008).
[75] A. Bertsch, S. Jiguet, P. Bernhard, P. Renaud. Microstereolithography: a review. MRS Proc., 758, LL1.1(2002).
[76] K. Salonitis. Stereolithography. Comprehensive Materials Processing, 19-67(2014).
[77] A. Heinrich, M. Rank. 3D Printing of Optics(2018).
[78] M. T. Do, T. T. N. Nguyen, Q. Li, H. Benisty, I. Ledoux-Rak, N. D. Lai. Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing. Optics Express, 21, 20964-20973(2013).
[79] T. H. Au, D. T. Trinh, Q. C. Tong, D. B. Do, D. P. Nguyen, M.-H. Phan, N. P. Lai. Direct laser writing of magneto-photonic sub-microstructures for prospective applications in biomedical engineering. Nanomaterials, 7, 105(2017).
[80] T. Baldacchini. Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications, 485(2015).
[81] L. Li, J. T. Fourkas. Multiphoton polymerization. Mater. Today, 10, 30-37(2007).
[82] M. Göppert-Mayer. Über Elementarakte mit zwei Quantensprüngen. Ann. Phys. Lpz., 401, 273-294(2006).
[83] P. L. Baldeck, O. Stephan, C. Andraud. Two-photon induced photochemistry for 3D microstructuration. Nonlinear Opt. Quantum Opt., 40, 199-222(2010).
[84] S. Maruo, O. Nakamura, S. Kawata. Three-dimensional microfabrication with two-photon-absorbed photopolymerization. Opt. Lett., 22, 132-134(1997).
[85] S. Kawata, H.-B. Sun, T. Tanaka, K. Takada. Finer features for functional microdevices. Nature, 412, 697-698(2001).
[86] K. J. Schafer, J. M. Hales, M. Balu, K. D. Belfield, E. W. Van Stryland, D. J. Hagan. Two-photon absorption cross-sections of common photoinitiators. J. Photochem. Photobiol. A, 162, 497-502(2004).
[87] P.-I. Dietrich, M. Blaicher, I. Reuter, M. Billah, T. Hoose, A. Hofmann, C. Caer, R. Dangel, B. Offrein, U. Troppenz, M. Moehrle, W. Freude, C. Koos.
[88] T. Gissibl, S. Thiele, A. Herkommer, H. Giessen. Sub-micrometre accurate free-form optics by three-dimensional printing on single-mode fibres. Nat. Commun., 7, 11763(2016).
[89] K. Takada, H.-B. Sun, S. Kawata. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl. Phys. Lett., 86, 071122(2005).
[90] K. Takada, H.-B. Sun, S. Kawata. The study on spatial resolution in two-photon induced polymerization. Proc. SPIE, 6110, 61100A(2006).
[91] S. H. Park, T. W. Lim, D.-Y. Yang, R. H. Kim, K.-S. Lee. Improvement of spatial resolution in nano-stereolithography using radical quencher. Macromol. Res., 14, 559-564(2006).
[92] T. Klar, S. Jakobs, M. Dyba, A. Egner, S. W. Hell. Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. USA, 97, 8206-8210(2000).
[93] L. Li, R. Gattass, E. Gershgoren, H. Hwang, J. T. Fourkas. Achieving
[94] R. Nielson, B. Kaehr, J. B. Shear. Microreplication and design of biological architectures using dynamic-mask multiphoton lithography. Small, 5, 120-125(2009).
[95] E. T. Ritschdorff, R. Nielson, J. B. Shear. Multi-focal multiphoton lithography. Lab Chip, 12, 867-871(2012).
[96] V. Hahn, P. Kiefer, T. Frenzel, J. Qu, E. Blasco, C. Barner-Kowollik, M. Wegener. Rapid assembly of small materials building blocks (Voxels) into large functional 3D metamaterials. Adv. Funct. Mater., 30, 1907795(2020).
[97] Q. Geng, D. Wang, P. Chen, S.-C. Chen. Ultrafast multi-focus 3-D nano-fabrication based on two-photon polymerization. Nat. Commun., 10, 2179(2019).
[98] M. Ren, W. Lu, Q. Shao, F. Han, W. Ouyang, T. Zhang, C. C. L. Wang, S.-C. Chen. Aberration-free large-area stitch-free 3D nano-printing based on binary holography. Opt. Express, 29, 44250-44263(2021).
[99] S. K. Saha, D. Wang, V. H. Nguyen, Y. Chang, J. S. Oakdale, S.-C. Chen. Scalable submicrometer additive manufacturing. Science, 366, 105-109(2019).
[100] C. Gu, D. Zhang, D. Wang, Y. Yam, C. Li, S.-C. Chen. Parallel femtosecond laser light sheet micro-manufacturing based on temporal focusing. Precis. Eng., 50, 198-203(2017).
[101] S. Shukla, X. Vidal, E. P. Furlani, M. T. Swihart, K.-T. Kim, Y.-K. Yoon, A. Urbas, P. N. Prasad. Subwavelength direct laser patterning of conductive gold nanostructures by simultaneous photopolymerization and photoreduction. ACS Nano, 5, 1947-1957(2011).
[102] H. Zeng, D. Martella, P. Wasylczyk, G. Cerretti, J.-C. G. Lavocat, C.-H. Ho, C. Parmeggiani, D. S. Wiersma. High-resolution 3D direct laser writing for liquid-crystalline elastomer microstructures. Adv. Mater., 26, 2319-2322(2014).
[103] P. Lin, A. Aghababaie. Apparatus for fabrication of three dimensional objects. U.S. patent(2014).
[104] C. Sun, N. Fang, D. M. Wu, X. Zhang. Projection micro-stereolithography using digital micro-mirror dynamic mask. Sens. Actuators A, 121, 113-120(2005).
[105] P. Tesavibul, R. Felzmann, S. Gruber, R. Liska, I. Thompson, A. R. Boccaccini, J. Stampfl. Processing of 45S5 Bioglass® by lithography-based additive manufacturing. Mater. Lett., 74, 81-84(2012).
[106] J. Bonada, A. Muguruza, X. Fernández-Francos, X. Ramis. Optimisation procedure for additive manufacturing processes based on mask image projection to improve Z accuracy and resolution. J. Manuf. Process., 31, 689-702(2018).
[107] H.-W. Kang, J. H. Park, D.-W. Cho. A pixel based solidification model for projection based stereolithography technology. Sens. Actuators A, 178, 223-229(2012).
[108] M. P. Lee, G. J. T. Cooper, T. Hinkley, G. M. Gibson, M. J. Padgett, L. Cronin. Development of a 3D printer using scanning projection stereolithography. Sci. Rep., 5, 9875(2015).
[109] A. Bertsch, J. Y. Jézéquel, J. C. André. Study of the spatial resolution of a new 3D microfabrication process: the microstereophotolithography using a dynamic mask-generator technique. J. Photochem. Photobiol. A, 107, 275-281(1997).
[110] Y. Pan, C. Zhou, Y. Chen. A fast mask projection stereolithography process for fabricating digital models in minutes. J. Manuf. Sci. Eng., 134, 051011(2012).
[111] K. Kowsari, B. Zhang, S. Panjwani, Z. Chen, H. Hingorani, S. Akbari, N. X. Fang, Q. Ge. Photopolymer formulation to minimize feature size, surface roughness, and stair-stepping in digital light processing-based three-dimensional printing. Addit. Manuf., 24, 627-638(2018).
[112] X. Chen, W. Liu, B. Dong, J. Lee, H. O. T. Ware, H. F. Zhang, C. Sun. High-speed 3D printing of millimeter-size customized aspheric imaging lenses with sub 7 nm surface roughness. Adv. Mater., 30, 1705683(2018).
[113] Y. Pan, Y. Chen. Meniscus process optimization for smooth surface fabrication in stereolithography. Addit. Manuf., 12, 321-333(2016).
[114] J. R. Tumbleston, D. Shirvanyants, N. Ermoshkin, R. Janusziewicz, A. R. Johnson, D. Kelly, K. Chen, R. Pinschmidt, J. P. Rolland, A. Ermoshkin, E. T. Samulski, J. M. DeSimone. Continuous liquid interface production of 3D objects. Science, 347, 1349-1352(2015).
[115] R. Janusziewicz, J. R. Tumbleston, A. L. Quintanilla, S. J. Mecham, J. M. DeSimone. Layerless fabrication with continuous liquid interface production. Proc. Natl. Acad. Sci. USA, 113, 11703-11708(2016).
[116] M. P. de Beer, H. L. van der Laan, M. A. Cole, R. J. Burns, M. A. Whelan, T. F. Scott. Rapid, continuous additive manufacturing by volumetric polymerization inhibition patterning. Sci. Adv., 5, eaau8723(2019).
[117] G. Shao, R. Hai, C. Sun. 3D printing customized optical lens in minutes. Adv. Opt. Mater., 8, 1901646(2020).
[118] A. Vitale, M. G. Hennessy, O. K. Matar, J. T. Cabral. Interfacial profile and propagation of frontal photopolymerization waves. Macromolecules, 48, 198-205(2015).
[119] A. Vitale, M. G. Hennessy, O. K. Matar, J. T. Cabral. A unified approach for patterning via frontal photopolymerization. Adv. Mater., 27, 6118-6124(2015).
[120] O. Soppera, C. Turck, D. J. Lougnot. Fabrication of micro-optical devices by self-guiding photopolymerization in the near IR. Opt. Lett., 34, 461-463(2009).
[121] O. Soppera, M. Théodet. A method of producing an optical device and a corresponding system. U.S. patent(2019).
[122] M. G. Hennessy, A. Vitale, O. K. Matar, J. T. Cabral. Controlling frontal photopolymerization with optical attenuation and mass diffusion. Phys. Rev. E, 91, 062402(2015).
[123] Z. Zhao, J. Wu, X. Mu, H. Chen, H. J. Qi, D. Fang. Origami by frontal photopolymerization. Sci. Adv., 3, e1602326(2017).
[124] X.-A. Ton, B. T. S. Bui, M. Resmini, P. Bonomi, I. Dika, O. Soppera, K. Haupt. A versatile fiber-optic fluorescence sensor based on molecularly imprinted microstructures polymerized
[125] O. Soppera, S. Jradi, D. J. Lougnot. Photopolymerization with microscale resolution: influence of the physico-chemical and photonic parameters. J. Polym. Sci. A, 46, 3783-3794(2008).
[126] J. T. Cabral, S. D. Hudson, C. Harrison, J. F. Douglas. Frontal photopolymerization for microfluidic applications. Langmuir, 20, 10020-10029(2004).
[127] P. F. Moonen, I. Yakimets, J. Huskens. Fabrication of transistors on flexible substrates: from mass-printing to high-resolution alternative lithography strategies. Adv. Mater., 24, 5526-5541(2012).
[128] J. T. Cabral, J. F. Douglas. Propagating waves of network formation induced by light. Polymer, 46, 4230-4241(2005).
[129] B. G. Assefa, T. Saastamoinen, J. Biskop, M. Kuittinen, J. Turunen, J. Saarinen. 3D printed plano-freeform optics for non-coherent discontinuous beam shaping. Opt. Rev., 25, 456-462(2018).
[130] Z. Hong, R. Liang. IR-laser assisted additive freeform optics manufacturing. Sci. Rep., 7, 7145(2017).
[131] B. G. Assefa, M. Pekkarinen, H. Partanen, J. Biskop, J. Turunen, J. Saarinen. Imaging-quality 3D-printed centimeter-scale lens. Opt. Express, 27, 12630-12637(2019).
[133] Y. Lin, A. Harb, K. Lozano, D. Xu, K. P. Chen. Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element. Opt. Express, 17, 16625-16631(2009).
[134] K. Ohlinger, J. Lutkenhaus, B. Arigong, H. Zhang, Y. Lin. Spatially addressable design of gradient index structures through spatial light modulator based holographic lithography. J. Appl. Phys., 114, 213102(2013).
[135] S. Jeon, J.-U. Park, R. Cirelli, S. Yang, C. E. Heitzman, P. V. Braun, P. A. J. Kenis, J. A. Rogers. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks. Proc. Natl. Acad. Sci. USA, 101, 12428-12433(2004).
[136] M. Shusteff, A. E. M. Browar, B. E. Kelly, J. Henriksson, T. H. Weisgraber, R. M. Panas, N. X. Fang, C. M. Spadaccini. One-step volumetric additive manufacturing of complex polymer structures. Sci. Adv., 3, eaao5496(2017).
[137] B. E. Kelly, I. Bhattacharya, H. Heidari, M. Shusteff, C. M. Spadaccini, H. K. Taylor. Volumetric additive manufacturing via tomographic reconstruction. Science, 363, 1075-1079(2019).
[138] I. Bhattacharya, B. Kelly, M. Shusteff, C. Spadaccini, H. Taylor. Computed axial lithography: volumetric 3D printing of arbitrary geometries. Proc. SPIE, 10656, 106560P(2018).
[139] Th. Bortfeld, J. Bürkelbach, R. Boesecke, W. Schlegel. Methods of image reconstruction from projections applied to conformation therapy. Phys. Med. Biol., 35, 1423-1434(1990).
[140] D. Loterie, P. Delrot, C. Moser. High-resolution tomographic volumetric additive manufacturing. Nat. Commun., 11, 852(2020).
[141] M. Regehly, Y. Garmshausen, M. Reuter, N. F. König, E. Israel, D. P. Kelly, C.-Y. Chou, K. Koch, B. Asfari, S. Hecht. Xolography for linear volumetric 3D printing. Nature, 588, 620-624(2020).
Get Citation
Copy Citation Text
Emma Geisler, Maxime Lecompère, Olivier Soppera, "3D printing of optical materials by processes based on photopolymerization: materials, technologies, and recent advances," Photonics Res. 10, 1344 (2022)
Category: Optical and Photonic Materials
Received: Jan. 10, 2022
Accepted: Mar. 16, 2022
Published Online: May. 12, 2022
The Author Email: Olivier Soppera (olivier.soppera@uha.fr)