Chinese Journal of Lasers, Volume. 49, Issue 12, 1206003(2022)

Nonlinear Fourier Transform and Its Applications in Optical Communications and Pulse Characterizations

Fanglin Chen1, Yiqing Cao1, Yutian Wang1, Xiahui Tang1, Ming Tang1, Songnian Fu2, and Luming Zhao1、*
Author Affiliations
  • 1School of Optical and Electronic Information & Wuhan National Laboratory for Optoelectronics, Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
  • 2Advanced Institute of Photonics Technology, School of Information Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
  • show less
    References(90)

    [1] Kao K C, Hockham G A. Dielectric-fibre surface waveguides for optical frequencies[J]. Proceedings of the Institution of Electrical Engineers, 113, 1151-1158(1966).

    [2] Agrawal G P. Fiber-optic communication systems[M]. Control of nonlinear effects, 317-357(2021).

    [3] Agrawal G P. Nonlinear fiber optics[M]. Christiansen P L, Sørensen M P, Scott A C. Nonlinear science at the dawn of the 21st century. Lecture notes in physics, 542, 15-19(2000).

    [4] Bayvel P, Maher R, Xu T H et al. Maximizing the optical network capacity[J]. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 374, 20140440(2016).

    [5] Lau A P T, Sui Q, Tam H Y et al. Long-haul quasi-single-mode transmission using few-mode fiber with multi-path interference compensation[C], 14737610(2014).

    [6] Ip E, Kahn J M. Compensation of dispersion and nonlinear impairments using digital backpropagation[J]. Journal of Lightwave Technology, 26, 3416-3425(2008).

    [7] Zervas M N, Codemard C A. High power fiber lasers:a review[J]. IEEE Journal of Selected Topics in Quantum Electronics, 20, 219-241(2014).

    [8] Fermann M E, Hartl I. Ultrafast fibre lasers[J]. Nature Photonics, 7, 868-874(2013).

    [9] Tang D Y, Li L, Song Y F et al. Evidence of dark solitons in all-normal-dispersion-fiber lasers[J]. Physical Review A, 88, 013849(2013).

    [10] Sheppard A P, Kivshar Y S. Polarized dark solitons in isotropic Kerr media[J]. Physical Review E, 55, 4773-4782(1997).

    [11] Soto-Crespo J M, Akhmediev N N, Afanasjev V V et al. Pulse solutions of the cubic-quintic complex Ginzburg-Landau equation in the case of normal dispersion[J]. Physical Review E, 55, 4783-4796(1997).

    [12] Wang Y Q, Wang X Y, Peng J S et al. Experimental observation of transient mode-locking in the build-up stage of a soliton fiber laser[J]. Chinese Optics Letters, 19, 071401(2021).

    [13] Han D D, Mei L Z, Zhang J Y et al. Dissipative soliton molecule mode-locked fiber laser with controllable separation[J]. Laser & Optoelectronics Progress, 58, 2114013(2021).

    [14] Liu K W, Xiao X S, Ding Y H et al. Buildup dynamics of multiple solitons in spatiotemporal mode-locked fiber lasers[J]. Photonics Research, 9, 1898-1906(2021).

    [15] Zhao K J, Gao C X, Xiao X S et al. Real-time collision dynamics of vector solitons in a fiber laser[J]. Photonics Research, 9, 289-298(2021).

    [16] Zhao L M, Tang D Y, Lin F et al. Observation of period-doubling bifurcations in a femtosecond fiber soliton laser with dispersion management cavity[J]. Optics Express, 12, 4573-4578(2004).

    [17] Lecaplain C, Grelu P, Soto-Crespo J M et al. Dissipative rogue waves generated by chaotic pulse bunching in a mode-locked laser[J]. Physical Review Letters, 108, 233901(2012).

    [18] Renninger W H, Chong A, Wise F W. Amplifier similaritons in a dispersion-mapped fiber laser[J]. Optics Express, 19, 22496-22501(2011).

    [19] Hasegawa A, Tappert F. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Applied Physics Letters, 23, 142-144(1973).

    [20] Tang D Y, Zhang H, Zhao L M et al. Observation of high-order polarization-locked vector solitons in a fiber laser[J]. Physical Review Letters, 101, 153904(2008).

    [21] Kelly S M J. Characteristic sideband instability of periodically amplified average soliton[J]. Electronics Letters, 28, 806-807(1992).

    [22] Pandit N, Noske D U, Kelly S M J et al. Characteristic instability of fibre loop soliton lasers[J]. Electronics Letters, 28, 455-457(1992).

    [23] Liu M, Chen H J, Luo A P et al. Identification of coherent and incoherent spectral sidebands in an ultrafast fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 24, 17088617(2018).

    [24] Herink G, Kurtz F, Jalali B et al. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules[J]. Science, 356, 50-54(2017).

    [25] Tikan A, Billet C, El G et al. Universality of the peregrine soliton in the focusing dynamics of the cubic nonlinear Schrödinger equation[J]. Physical Review Letters, 119, 033901(2017).

    [26] Yousefi M I, Kschischang F R. Information transmission using the nonlinear Fourier transform, part I:mathematical tools[J]. IEEE Transactions on Information Theory, 60, 4312-4328(2014).

    [27] Yousefi M I, Kschischang F R. Information transmission using the nonlinear Fourier transform, part II:numerical methods[J]. IEEE Transactions on Information Theory, 60, 4329-4345(2014).

    [28] Yousefi M I, Kschischang F R. Information transmission using the nonlinear Fourier transform, part III:spectrum modulation[J]. IEEE Transactions on Information Theory, 60, 4346-4369(2014).

    [29] Weerasekara G, Maruta A. Characterization of optical rogue wave based on solitons’ eigenvalues of the integrable higher-order nonlinear Schrödinger equation[J]. Optics Communications, 382, 639-645(2017).

    [30] Turitsyn S K, Chekhovskoy I S, Fedoruk M P. Nonlinear Fourier transform for analysis of optical spectral combs[J]. Physical Review E, 103, L020202(2021).

    [31] Zhang W Q, Chan T H, Afshar V S. A correlation propagation model for nonlinear Fourier transform of second order solitons[J]. Scientific Reports, 11, 2434(2021).

    [32] Aref V. Nonlinear Fourier transform of truncated multi-soliton pulses[C], 203-208(2019).

    [33] Wang Y T, Fu S N, Zhang C et al. Soliton distillation of pulses from a fiber laser[J]. Journal of Lightwave Technology, 39, 2542-2546(2021).

    [34] Wang Y T, Fu S N, Kong J et al. Nonlinear Fourier transform enabled eigenvalue spectrum investigation for fiber laser radiation[J]. Photonics Research, 9, 1531-1539(2021).

    [35] Sugavanam S, Kopae M K, Peng J et al. Analysis of laser radiation using the nonlinear Fourier transform[J]. Nature Communications, 10, 5663(2019).

    [36] Yang J K[M]. Nonlinear waves in integrable and nonintegrable systems(2010).

    [37] Zakharov V, Shabat A. Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media[J]. Journal of Experimental and Theoretical Physics, 34, 62-69(1970).

    [38] Ablowitz M J, Kaup D J, Newell A C et al. The inverse scattering transform-Fourier analysis for nonlinear problems[J]. Studies in Applied Mathematics, 53, 249-315(1974).

    [39] Zhang W Q, Gui T, Zhang Q et al. Correlated eigenvalues of multi-soliton optical communications[J]. Scientific Reports, 9, 6399(2019).

    [40] Gaiarin S[D]. Nonlinear Fourier transform for dual-polarization optical communication system, 9-35(2018).

    [41] Lax P D. Integrals of nonlinear equations of evolution and solitary waves[J]. Communications on Pure and Applied Mathematics, 21, 467-490(1968).

    [42] Gaiarin S, Perego A M, da Silva E P et al. Dual-polarization nonlinear Fourier transform-based optical communication system[J]. Optica, 5, 263-270(2018).

    [43] Turitsyn S K, Prilepsky J E, Le S T et al. Nonlinear Fourier transform for optical data processing and transmission:advances and perspectives[J]. Optica, 4, 307-322(2017).

    [44] Prilepsky J E, Derevyanko S A, Turitsyn S K. Nonlinear spectral management:linearization of the lossless fiber channel[J]. Optics Express, 21, 24344-24367(2013).

    [45] Civelli S, Barletti L, Secondini M. Numerical methods for the inverse nonlinear Fourier transform[C], 13-16(2015).

    [47] Bülow H. Experimental demonstration of optical signal detection using nonlinear Fourier transform[J]. Journal of Lightwave Technology, 33, 1433-1439(2015).

    [48] Mitra P P, Stark J B. Nonlinear limits to the information capacity of optical fibre communications[J]. Nature, 411, 1027-1030(2001).

    [49] Jansen S L, van den Borne D, Spinnler B et al. Optical phase conjugation for ultra long-haul phase-shift-keyed transmission[J]. Journal of Lightwave Technology, 24, 54-64(2006).

    [50] Le S T, Prilepsky J E, Turitsyn S K. Nonlinear inverse synthesis for high spectral efficiency transmission in optical fibers[J]. Optics Express, 22, 26720-26741(2014).

    [51] Turitsyn S K. Nonlinear Fourier transform based transmission[C], 17733509(2017).

    [52] le S T, Aref V, Buelow H. Nonlinear signal multiplexing for communication beyond the Kerr nonlinearity limit[J]. Nature Photonics, 11, 570-576(2017).

    [53] Hasegawa A, Nyu T. Eigenvalue communication[J]. Journal of Lightwave Technology, 11, 395-399(1993).

    [54] Bülow H, Aref V, Idler W. Transmission of waveforms determined by 7 eigenvalues with PSK-modulated spectral amplitudes[C], 412-414(2016).

    [55] Chen J D, Chen Y Z, Duan Y X et al. Geometric shaping optimization of 64-APSK constellation in discrete nonlinear frequency division multiplexing systems[J]. Optics Letters, 46, 3368-3371(2021).

    [56] Zhou G, Sun L, Lu C et al. Multi-symbol digital signal processing techniques for discrete eigenvalue transmissions based on nonlinear Fourier transform[J]. Journal of Lightwave Technology, 39, 5459-5467(2021).

    [57] Le S T, Philips I D, Prilepsky J E et al. First experimental demonstration of nonlinear inverse synthesis transmission over transoceanic distances[C], Tu2A.1(2016).

    [58] Le S T, Aref V, Buelow H. 125 Gbps pre-compensated nonlinear frequency-division multiplexed transmission[C], 17749242(2017).

    [59] Chen X Y, Fang X S, Yang F et al. 6.4 Tb/s (16×400 Gb/s) nonlinear frequency division multiplexing WDM transmission over 640 km SSMF[C], T5A.4(2021).

    [60] Le S T, Buelow H, Aref V. Demonstration of 64×0.5 Gbaud nonlinear frequency division multiplexed transmission with 32QAM[C], W3J.1(2017).

    [61] Yang Z X H, Aref V, le S T et al. 400 Gbps dual-polarisation non-linear frequency-division multiplexed transmission with b-modulation[C], 18265196(2018).

    [62] Yang Z X H, le S T, Aref V et al. Experimental demonstration of dual-polarization NFDM transmission with:b- modulation[J]. IEEE Photonics Technology Letters, 31, 885-888(2019).

    [63] Gui T, Lu C, Lau A P T et al. High-order modulation on a single discrete eigenvalue for optical communications based on nonlinear Fourier transform[J]. Optics Express, 25, 20286-20297(2017).

    [64] Zheng Z B, Zhang X L, Yu R H et al. Frequency offset estimation for nonlinear frequency division multiplexing with discrete spectrum modulation[J]. Optics Express, 27, 28223-28238(2019).

    [65] Mishina K, Sato S, Yamamoto S et al. Demodulation of eigenvalue modulated signal based on eigenvalue-domain neural network[C], W3D.1(2020).

    [66] Tai K, Tomita A, Jewell J L et al. Generation of subpicosecond solitonlike optical pulses at 0.3 THz repetition rate by induced modulational instability[J]. Applied Physics Letters, 49, 236-238(1986).

    [67] Mollenauer L F, Smith K. Demonstration of soliton transmission over more than 4000 km in fiber with loss periodically compensated by Raman gain[J]. Optics Letters, 13, 675-677(1988).

    [68] Mamyshev P V, Chernikov S V, Dianov E M. Generation of fundamental soliton trains for high-bit-rate optical fiber communication lines[J]. IEEE Journal of Quantum Electronics, 27, 2347-2355(1991).

    [69] Hari S, Kschischang F, Yousefi M. Multi-eigenvalue communication via the nonlinear Fourier transform[C], 92-95(2014).

    [70] Kotlyar O, Pankratova M, Kamalian-Kopae M et al. Combining nonlinear Fourier transform and neural network-based processing in optical communications[J]. Optics Letters, 45, 3462-3465(2020).

    [71] Wahls S, Poor H V. Fast numerical nonlinear Fourier transforms[J]. IEEE Transactions on Information Theory, 61, 6957-6974(2015).

    [72] Wahls S, Poor H V. Fast inverse nonlinear Fourier transform for generating multi-solitons in optical fiber[C], 1676-1680(2015).

    [73] Vasylchenkova A, Salnikov D, Karaman D et al. Fixed-point realization of fast nonlinear Fourier transform algorithm for FPGA implementation of optical data processing[J]. Proceedings of SPIE, 11770, 1177016(2021).

    [74] Chekhovskoy I S, Shtyrina O V, Fedoruk M P et al. Nonlinear Fourier transform for analysis of coherent structures in dissipative systems[J]. Physical Review Letters, 122, 153901(2019).

    [75] Song Y F, Shi X J, Wu C F et al. Recent progress of study on optical solitons in fiber lasers[J]. Applied Physics Reviews, 6, 021313(2019).

    [76] Turitsyn S K, Chekhovskoy I S, Fedoruk M P. Nonlinear Fourier transform for characterization of the coherent structures in optical microresonators[J]. Optics Letters, 45, 3059-3062(2020).

    [77] Runge A F J, Broderick N G R, Erkintalo M. Observation of soliton explosions in a passively mode-locked fiber laser[J]. Optica, 2, 36-39(2015).

    [78] Ryczkowski P, Närhi M, Billet C et al. Real-time full-field characterization of transient dissipative soliton dynamics in a mode-locked laser[J]. Nature Photonics, 12, 221-227(2018).

    [79] Dennis M L, Duling I N. Experimental study of sideband generation in femtosecond fiber lasers[J]. IEEE Journal of Quantum Electronics, 30, 1469-1477(1994).

    [80] Du Y Q, Han M M, Cheng P Y et al. Pulsating soliton with broadened Kelly sidebands in an ultrafast fiber laser[J]. Optics Letters, 44, 4087-4090(2019).

    [81] Wang P, Xiao X S, Grelu P et al. Subsideband generation associated with period-N pulsations in Tm soliton fiber lasers[J]. IEEE Photonics Journal, 9, 16983085(2017).

    [82] Tang D Y, Zhao L M, Wu X et al. Soliton modulation instability in fiber lasers[J]. Physical Review A, 80, 023806(2009).

    [83] Luo Z C, Xu W C, Song C X et al. Modulation instability induced by periodic power variation in soliton fiber ring lasers[J]. The European Physical Journal D, 54, 693-697(2009).

    [84] Matera F, Mecozzi A, Romagnoli M et al. Sideband instability induced by periodic power variation in long-distance fiber links[J]. Optics Letters, 18, 1499-1501(1993).

    [85] Logvin Y, Anis H. Suppression of multi-period instabilities by third-order dispersion in mode-locked Yb-doped fiber lasers[J]. Journal of the Optical Society of America B, 25, 622-632(2008).

    [86] Zhao L M, Tang D Y, Wu X et al. Observation of dip-type sidebands in a soliton fiber laser[J]. Optics Communications, 283, 340-343(2010).

    [87] Wu Q C, Liu C Y, Yao Y et al. Experimental and simulated demonstration of a theoretical model for dip-type spectral sidebands in soliton fiber lasers[J]. Optics & Laser Technology, 141, 107152(2021).

    [88] Yoshino K I, Fujiwara M, Tanaka A et al. High-speed wavelength-division multiplexing quantum key distribution system[J]. Optics Letters, 37, 223-225(2012).

    [89] Pan J X, Huang T Y, Wang Y T et al. Numerical investigations of cavity-soliton distillation in Kerr resonators using the nonlinear Fourier transform[J]. Physical Review A, 104, 043507(2021).

    [90] Karanov B, Lavery D, Bayvel P et al. End-to-end optimized transmission over dispersive intensity-modulated channels using bidirectional recurrent neural networks[J]. Optics Express, 27, 19650-19663(2019).

    Tools

    Get Citation

    Copy Citation Text

    Fanglin Chen, Yiqing Cao, Yutian Wang, Xiahui Tang, Ming Tang, Songnian Fu, Luming Zhao. Nonlinear Fourier Transform and Its Applications in Optical Communications and Pulse Characterizations[J]. Chinese Journal of Lasers, 2022, 49(12): 1206003

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: fiber optics and optical communications

    Received: Dec. 28, 2021

    Accepted: Feb. 28, 2022

    Published Online: Jun. 13, 2022

    The Author Email: Luming Zhao (lmzhao@hust.edu.cn)

    DOI:10.3788/CJL202249.1206003

    Topics