Laser & Infrared, Volume. 54, Issue 5, 701(2024)

Depth prediction of K424 alloy etching based on machine learning

ZHANG Qing1,2,3, QIAO Hong-cao1,2、*, WANG Shun-shan1,2,3, and ZHAO Ji-bin1,2
Author Affiliations
  • 1Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang 110016, China
  • 2Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
  • 3University of Chinese Academy of Sciences, Beijing 100049, China
  • show less
    References(11)

    [6] [6] Hao J B, Yang S, Le X W, et al. Bead morphology prediction of coaxial laser cladding on inclined substrate using machine learning[J]. Journal of Manufacturing Processes, 2023, 98: 159-172.

    [8] [8] Chen T, Guestrin C. XGBoost: a scalable tree boosting system[J/OL]. https://arxiv.org/pdf/1603.02754.pdf.

    [9] [9] Zou M, Jiang W G, Qin Q H, et al. Optimized XGBoost model with small dataset for predicting relative density of Ti-6Al-4V parts manufactured by selective laser melting[J]. Materials, 2022, 15(15): 5298.

    [10] [10] Zhang Z F, Huang Y M, Qin R, et al. XGBoost-based on-line prediction of seam tensile strength for Al-Li alloy in laser welding: Experiment study and modelling[J]. Journal of Manufacturing Processes, 2021, 64: 30-44.

    [11] [11] Lu C, Fei J Y, Meng X Z, et al. Thermal error prediction and compensation of digital twin laser cutting based on T-XGBoost[J]. Sensors, 2022, 22(18): 7022.

    [12] [12] Breiman L. Random forests[J]. Machine Learning, 2001, 45(1): 5-32.

    [13] [13] Kwak S M, Kim J W, Ding H S, et al. Machine learning prediction of the mechanical properties of -TiAl alloys produced using random forest regression model[J]. Journal of Materials Research and Technology, 2022, 18: 520-530.

    [16] [16] Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature, 1986, 323(9): 533-536.

    [17] [17] Gao J L, Wang C, Hao Y B, et al. Prediction of molten pool temperature and processing quality in laser metal deposition based on back propagation neural network algorithm[J]. Optics & Laser Technology, 2022, 155: 108363.

    [19] [19] Cortes C, Vapnik V. Support-vector networks[J]. Mach Learn, 1995, 20(9): 273-297.

    [21] [21] Sun Y, Ding S, Zhang Z. et al. An improved grid search algorithm to optimize SVR for prediction[J]. Soft Comput, 2021, 25(4): 5633-5644.

    Tools

    Get Citation

    Copy Citation Text

    ZHANG Qing, QIAO Hong-cao, WANG Shun-shan, ZHAO Ji-bin. Depth prediction of K424 alloy etching based on machine learning[J]. Laser & Infrared, 2024, 54(5): 701

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Aug. 7, 2023

    Accepted: May. 21, 2025

    Published Online: May. 21, 2025

    The Author Email: QIAO Hong-cao (hcqiao@sia.cn)

    DOI:10.3969/j.issn.1001-5078.2024.05.007

    Topics