Opto-Electronic Engineering, Volume. 52, Issue 6, 250066(2025)

Simulation system for measuring multiple environmental elements in the ocean based on direct scattering spectrum

Mengfan Liang1,2, Sheng Chen1, Yuanxin Guo1, Yangrui Xu1, and Kun Liang1、*
Author Affiliations
  • 1School of Electronic Information and Communications, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
  • 2School of Information Engineering, Wuhan Huaxia Institute of Technology, Wuhan, Hubei 430223, China
  • show less
    Figures & Tables(25)
    Diagram of scattering spectra[8]
    Basic structure of underwater DSSL system
    Imaging principle of spectral measurement method based on Fizeau interferometer and multi-channel PMT[15]
    Overall module design of the system
    Transmission end and channel simulation flowchart
    Simulation flowchart of optical receiving and spectral measurement system
    Flowchart of spectral line extraction algorithm
    Simulation software architecture
    Software interface design. (a) System display interface; (b) System working interface
    Spectral simulation results. (a) Laser spectrum; (b) Scattering spectra; (c) Laser broadening spectra; (d) Laser induced scattering spectra; (e) Fizeau frequency discrimination spectra; (f) PMT receiving spectra
    Error distribution of 1000 repeated measurements. (a) Temperature measurement errors distribution; (b) Distribution of measurement errors in salinity
    Detection accuracy results. (a) Multi temperature measurement results[15]; (b) Multi salinity measurement results[15]
    Detection accuracy results. (a) Multi temperature simulation results; (b) Multi salinity simulation results
    Detection error at multiple depths
    • Table 1. Parameter design of laser emission system

      View table
      View in Article

      Table 1. Parameter design of laser emission system

      Parameter nameTypical value
      Incident wavelength/nm532
      Laser energy/J0.02
      Pulse width/GHz0.1
      Frequency range/GHz12
    • Table 2. Parameter design of seawater channel system

      View table
      View in Article

      Table 2. Parameter design of seawater channel system

      Parameter nameTypical value
      Theoretical temperature/℃25 (0~30)
      Water attenuation coefficient0.08
      Backscatter coefficient0.00024
      Scattering energy ratio0.04
      Theoretical salinity/‰15 (0~35)
      Water reflectance1.33
      Underwater detection depth/m27
      Underwater noise coefficient2
    • Table 3. Parameter design of optical reception and spectral measurement system

      View table
      View in Article

      Table 3. Parameter design of optical reception and spectral measurement system

      Parameter nameTypical value
      Integral number1000
      Receiver height/m100
      Fiber efficiency0.4
      Fizeau wedge angle/rad1.6835×10−5
      Medium refractive index1
      Channel width/m0.0008
      Telescope radius/m0.05
      Detection efficiency0.13
      Plate length/mm0.006
      Planar reflectance0.9
      Channel gap/m0.0002
      Dark current noise/W10−10
    • Table 4. Parameter design of signal processing system

      View table
      View in Article

      Table 4. Parameter design of signal processing system

      Parameter nameTypical value
      Initial conditions/GHz7.670, 0.617, and 0.150
      Minimum feature value/GHz7.2, 0.2, and 0.1
      Maximum feature value/GHz7.8, 0.8, and 0.3
      Tolerance1×10−20
    • Table 5. Experimental results of spectral line feature extraction

      View table
      View in Article

      Table 5. Experimental results of spectral line feature extraction

      Spectral parameterMeasurement valueTheoretical valueError
      Brillouin linewidth/GHz0.72730.7321−0.0048
      Brillouin shift/GHz7.53057.5318−0.0013
      Rayleigh linewidth/GHz0.23650.15000.0865
    • Table 6. Model retrieval results

      View table
      View in Article

      Table 6. Model retrieval results

      Environmental factorMeasurement valueTheoretical valueError
      Temperature/℃15.1273150.1273
      Salinity/‰24.523525−0.4765
    • Table 7. Analysis results of error distribution

      View table
      View in Article

      Table 7. Analysis results of error distribution

      Error categoryConfidence levelConfidence intervalFitting error
      Temperature95%[−0.409, 0.422]0.041
      Salinity95%[−0.776, 0.857]0.043
    • Table 8. Error distribution of temperature and salt measurement results under different integration times

      View table
      View in Article

      Table 8. Error distribution of temperature and salt measurement results under different integration times

      Integral numberError categoryConfidence levelConfidence interval
      1Temperature95%[−4.561, 4.643]
      Salinity95%[−5.332, 5.421]
      100Temperature95%[−1.331, 1.413]
      Salinity95%[−2.112, 2.168]
      1000Temperature95%[−0.409, 0.422]
      Salinity95%[−0.776, 0.857]
    • Table 9. System parameters of the LiDAR

      View table
      View in Article

      Table 9. System parameters of the LiDAR

      Parameter nameValue
      Temperature/℃19.1, 20.8, 24.5, 25.1, and 29.8
      Pulse time/ns7.5
      Telescope focus/mm100
      Depth/m0.36
      Repetitive frequency/Hz100
      Laser power/mJ20
      Refractive index/‰0.1, 2.1, 6.2, 5.1, and 24.1
      Wavelength/nm532
      Optical efficiency/%17.6
      Incident angle/(°)179.5
      PMT arraySPCM-02-L16
      System efficiency/%80
    • Table 10. Comparison between simulation results and real experimental results

      View table
      View in Article

      Table 10. Comparison between simulation results and real experimental results

      CategoryActual measurement dataSimulation measurement dataRelative error
      Temperature accuracy0.130.127.7%
      Salinity accuracy0.160.156.3%
    • Table 11. Actual experimental conditions for laser remote sensing

      View table
      View in Article

      Table 11. Actual experimental conditions for laser remote sensing

      Parameter nameValue
      Integral number1000
      Pulse time/ns10
      Telescope radius/m0.05
      Height/m2.45
      Repetitive frequency/Hz100
      Laser power/mJ20
      Refractive index1.33
      Wavelength/nm532
      Optical efficiency/%40
      Incident angle/(°)179
      Attenuation coefficient0.2
      System efficiency/%13
    Tools

    Get Citation

    Copy Citation Text

    Mengfan Liang, Sheng Chen, Yuanxin Guo, Yangrui Xu, Kun Liang. Simulation system for measuring multiple environmental elements in the ocean based on direct scattering spectrum[J]. Opto-Electronic Engineering, 2025, 52(6): 250066

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category: Article

    Received: Mar. 6, 2025

    Accepted: Apr. 30, 2025

    Published Online: Sep. 3, 2025

    The Author Email: Kun Liang (梁琨)

    DOI:10.12086/oee.2025.250066

    Topics