Optics and Precision Engineering, Volume. 32, Issue 24, 3594(2024)
Piezoelectric rotational energy harvester with indirect magnetic excitation
[1] WANG H, JASIM A, CHEN X. Energy harvesting technologies in roadway and bridge for different applications-A comprehensive review[J]. Applied Energy, 212, 1083-1094(2018).
[2] MA X Q, ZHOU S X. A review of flow-induced vibration energy harvesters[J]. Energy Conversion and Management, 254, 115223(2022).
[3] AZIMI S, GOLABCHI A, NEKOOKAR A et al. Self-powered cardiac pacemaker by piezoelectric polymer nanogenerator implant[J]. Nano Energy, 83, 105781(2021).
[4] CAO J Y, WANG W, ZHOU S X et al. Nonlinear time-varying potential bistable energy harvesting from human motion[J]. Applied Physics Letters, 107, 143904(2015).
[5] NASTRO A, PIENAZZA N, BAÙ M et al. Wearable ball-impact piezoelectric multi-converters for low-frequency energy harvesting from human motion[J]. Sensors, 22, 772(2022).
[6] SUN W P, ZHAO D L, TAN T et al. Low velocity water flow energy harvesting using vortex induced vibration and galloping[J]. Applied Energy, 251, 113392(2019).
[7] WANG J L, GENG L F, DING L et al. The state-of-the-art review on energy harvesting from flow-induced vibrations[J]. Applied Energy, 267, 114902(2020).
[8] ZHANG Z H, LI Z, MENG F X et al. Wind-induced vibration piezoelectric energy harvester with a deformable airfoil-shape blunt body[J]. Opt. Precision Eng., 31, 3570-3579(2023).
张忠华, 李哲, 孟凡许. 可变形式翼型钝体的风致振压电俘能器[J]. 光学 精密工程, 31, 3570-3579(2023).
[9] LO Y C, SHU Y C. Self-powered SECE piezoelectric energy harvesting induced by shock excitations for sensor supply[J]. Mechanical Systems and Signal Processing, 177, 109123(2022).
[10] YANG Y, SHEN Q L, JIN J M et al. Rotational piezoelectric wind energy harvesting using impact-induced resonance[J]. Applied Physics Letters, 105(2014).
[11] MUTHALIF A GA, HAFIZH M, RENNO J et al. A hybrid piezoelectric-electromagnetic energy harvester from vortex-induced vibrations in fluid-flow; the influence of boundary condition in tuning the harvester[J]. Energy Conversion and Management, 256, 115371(2022).
[12] YANG B, YI Z R, TANG G et al. A gullwing-structured piezoelectric rotational energy harvester for low frequency energy scavenging[J]. Applied Physics Letters, 115(2019).
[13] WANG J X, SU W B, LI J C et al. A rotational piezoelectric energy harvester based on trapezoid beam: simulation and experiment[J]. Renewable Energy, 184, 619-626(2022).
[14] KAN J W, HE H Q, WANG S Y et al. Structure and performance of rotating piezoelectric generator with tunable frequency[J]. Opt. Precision Eng., 27, 577-583(2019).
阚君武, 何恒钱, 王淑云. 可调频旋磁激励式压电发电机的设计与试验[J]. 光学 精密工程, 27, 577-583(2019).
[15] ZOU H X, ZHANG W M, LI W B et al. Design and experimental investigation of a magnetically coupled vibration energy harvester using two inverted piezoelectric cantilever beams for rotational motion[J]. Energy Conversion and Management, 148, 1391-1398(2017).
[16] NA Y, LEE M S, LEE J W et al. Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling for rotational energy harvester applications[J]. Energies, 14, 498(2021).
[17] ZHANG Z H, CHAI J L, WU Y Q et al. A rotational energy harvester utilizing an asymmetrically deformed piezoelectric transducer subjected only to unidirectional compressive stress[J]. Energy Reports, 9, 657-668(2023).
[18] XIE Z Q, XIONG J T, ZHANG D Q et al. Design and experimental investigation of a piezoelectric rotation energy harvester using bistable and frequency up-conversion mechanisms[J]. Applied Sciences, 8, 1418(2018).
[19] FU H L, YEATMAN E M. A methodology for low-speed broadband rotational energy harvesting using piezoelectric transduction and frequency up-conversion[J]. Energy, 125, 152-161(2017).
[20] FU H L, YEATMAN E M. Rotational energy harvesting using bi-stability and frequency up-conversion for low-power sensing applications: theoretical modelling and experimental validation[J]. Mechanical Systems and Signal Processing, 125, 229-244(2019).
[21] YANG B, YI Z R, TANG G et al. A gullwing-structured piezoelectric rotational energy harvester for low frequency energy scavenging[J]. Applied Physics Letters, 115(2019).
[22] NEZAMI S, JUNG H, LEE S. Design of a disk-swing driven piezoelectric energy harvester for slow rotary system application[J]. Smart Materials and Structures, 28(2019).
[23] LIU L, HE L P, LIU X J et al. Design and experiment of a low frequency non-contact rotary piezoelectric energy harvester excited by magnetic coupling[J]. Energy, 258, 124882(2022).
[24] KAN J W, FAN C T, WANG S Y et al. Study on a piezo-windmill for energy harvesting[J]. Renewable Energy, 97, 210-217(2016).
[25] SUN F, DONG R H, ZHOU R et al. Theoretical and experimental investigation of a rotational magnetic couple piezoelectric energy harvester[J]. Micromachines, 13, 936(2022).
[26] MEI X T, ZHOU R, YANG B et al. Combining magnet-induced nonlinearity and centrifugal softening effect to realize high-efficiency energy harvesting in ultralow-frequency rotation[J]. Journal of Sound and Vibration, 505, 116146(2021).
[27] ZHANG Y S, ZHENG R C, NAKANO K et al. Stabilising high energy orbit oscillations by the utilisation of centrifugal effects for rotating-tyre-induced energy harvesting[J]. Applied Physics Letters, 112, 143901(2018).
Get Citation
Copy Citation Text
Shuyun WANG, Panpan LIU, Zefeng REN, Jijun ZHOU, Junwu KAN, Zhonghua ZHANG. Piezoelectric rotational energy harvester with indirect magnetic excitation[J]. Optics and Precision Engineering, 2024, 32(24): 3594
Category:
Received: Sep. 30, 2024
Accepted: --
Published Online: Mar. 11, 2025
The Author Email: Zhonghua ZHANG (zhangzhh@zjnu.edu.cn)