Acta Photonica Sinica, Volume. 51, Issue 10, 1026001(2022)

Recent Progress on the Interaction between Vector Beams and Alkali Metal Atomic Medium(Invited)

Xin YANG, Churong PAN, Yun CHEN, Jinwen WANG, Dong WEI**, and Hong GAO*
Author Affiliations
  • MOE Kay Laboratory for Nonequilibrian Synthesis and Modulation of Condensed Matter,Shaanxi Province Key Laboratory of Quantum Information and Quantum Optoelectronic Devices,School of Physics,Xi'an Jiaotong University,Xi'an 710049,China
  • show less
    References(174)

    [1] WEISS R J. A brief history of light and those that lit the way[M]. World Scientific(1996).

    [2] ZUBAIRY M S[M]. A very brief history of light, 3-24(2016).

    [3] PLANCK M. Entropie und temperatur strahlender wärme[J]. Annalen der Physik, 306, 719-737(1900).

    [4] EINSTEIN A. On a heuristic point of view concerning the production and transformation of light[J]. Annalen der Physik, 17, 1-18(1905).

    [5] SUTER D[M]. The physics of laser-atom interactions(1997).

    [6] BORN M, WOLF E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).

    [7] SCULLY M O, ZUBAIRY M S. Quantum optics[M]. American Association of Physics Teachers(1999).

    [8] BOYD R W[M]. Nonlinear optics(2020).

    [9] HECHT J. A short history of laser development[J]. Applied Optics, 49, F99-F122(2010).

    [10] SCHIRBER M. Nobel Prize-lasers as tools[J]. Physics, 11, 100(2018).

    [11] DUDLEY J M. Light, lasers, and the Nobel Prize[J]. Advanced Photonics, 2, 050501(2020).

    [12] SIEGMAN A E[M]. Lasers(1986).

    [13] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).

    [14] BANDRES M A, GUTIÉRREZ-VEGA J C. Ince-gaussian beams[J]. Optics Letters, 29, 144-146(2004).

    [15] SNITZER E. Cylindrical dielectric waveguide modes[J]. Journal of the Optical Society of America, 51, 491-498(1961).

    [16] HALL D G. Vector-beam solutions of Maxwell's wave equation[J]. Optics Letters, 21, 9-11(1996).

    [17] MUSHIAKE Y, MATSUMURA K, NAKAJIMA N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 60, 1107-1109(1972).

    [18] POHL D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 20, 266-267(1972).

    [19] MARHIC M E, GARMIRE E. Low‐order TE0 q operation of a CO2 laser for transmission through circular metallic waveguides[J]. Applied Physics Letters, 38, 743-745(1981).

    [20] TIDWELL S C, FORD D H, KIMURA W D. Generating radially polarized beams interferometrically[J]. Applied Optics, 29, 2234-2239(1990).

    [21] TIDWELL S C, KIM G H, KIMURA W D. Efficient radially polarized laser beam generation with a double interferometer[J]. Applied Optics, 32, 5222-5229(1993).

    [22] CHURIN E G, HOΒFELD J, TSCHUDI T. Polarization configurations with singular point formed by computer generated holograms[J]. Optics Communications, 99, 13-17(1993).

    [23] JORDAN R H, HALL D G. Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution[J]. Optics Letters, 19, 427-429(1994).

    [24] STALDER M, SCHADT M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 21, 1948-1950(1996).

    [25] YOUNGWORTH K S, BROWN T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).

    [26] BISS D P, BROWN T G. Cylindrical vector beam focusing through a dielectric interface[J]. Optics Express, 9, 490-497(2001).

    [27] ZHAN Qiwen, LEGER J R. Focus shaping using cylindrical vector beams[J]. Optics Express, 10, 324-331(2002).

    [28] WANG Haifeng, SHI Luping, LUKYANCHUK B et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2, 501-505(2008).

    [29] HAN Lei, QI Shuxia, LIU Sheng et al. Tightly focused light field with controllable pure transverse polarization state at the focus[J]. Optics Letters, 45, 6034-6037(2020).

    [30] OTTE E, TEKCE K, DENZ C. Tailored intensity landscapes by tight focusing of singular vector beams[J]. Optics Express, 25, 20194-20201(2017).

    [31] CHEN Yun, WANG Jinwen, PENG Zhou et al. Tailoring multi-singularity structure induced by a focused radially polarized beam[J]. Journal of the Optical Society of America A, 38, 419-425(2021).

    [32] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003).

    [33] MClAREN M, KONRAD T, FORBES A. Measuring the nonseparability of vector vortex beams[J]. Physical Review A, 92, 023833(2015).

    [34] SHEN Yijie, ROSALES‐GUZMÁN C. Nonseparable states of light: from quantum to classical[J]. Laser & Photonics Reviews, 16, 2100533(2022).

    [35] NDAGANO B, PEREZ-GARCIA B, ROUX F S et al. Characterizing quantum channels with non-separable states of classical light[J]. Nature Physics, 13, 397-402(2017).

    [36] ERHARD M, KRENN M, ZEILINGER A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2, 365-381(2020).

    [37] ERHARD M, FICKLER R, KRENN M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 7, 17146-17146(2018).

    [38] NDAGANO B, NAPE I, COX M A et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 36, 292-301(2018).

    [39] MAO Dong, ZHENG Yang, ZENG Chao et al. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 3, 014002(2021).

    [40] OTTE E, DENZ C. Optical trapping gets structure: structured light for advanced optical manipulation[J]. Applied Physics Reviews, 7, 041308(2020).

    [41] YANG Yuanjie, REN Yuxuan, CHEN Mingzhou et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).

    [42] BAUTISTA G, KAURANEN M. Vector-field nonlinear microscopy of nanostructures[J]. ACS Photonics, 3, 1351-1370(2016).

    [43] KOZAWA Y, SATO S. Small focal spot formation by vector beams[J]. Progress in Optics, 66, 35-90(2021).

    [44] GU Bing, CAO Xi, RUI Guanghao et al. Vector beams excited nonlinear optical effects[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850045(2018).

    [45] WANG Jinwen, CASTELLUCCI F, FRANKE-ARNOLD S. Vectorial light-matter interaction: exploring spatially structured complex light fields[J]. AVS Quantum Science, 2, 031702(2020).

    [46] SLUSSARENKO S, PRYDE G J. Photonic quantum information processing: a concise review[J]. Applied Physics Reviews, 6, 041303(2019).

    [47] FORBES A, NAPE I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light[J]. AVS Quantum Science, 1, 011701(2019).

    [48] COZZOLINO D, DA LIO B, BACCO D et al. High‐dimensional quantum communication: benefits, progress, and future challenges[J]. Advanced Quantum Technologies, 2, 1900038(2019).

    [49] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).

    [50] POLINO E, VALERI M, SPAGNOLO N et al. Photonic quantum metrology[J]. AVS Quantum Science, 2, 024703(2020).

    [51] KUTAS M, HAASE B E, RIEXINGER F et al. Quantum sensing with extreme light[J]. Advanced Quantum Technologies, 5, 2100164(2022).

    [52] FITZGERALD G. M. Poincaré and Maxwell[J]. Nature, 45, 532-533(1892).

    [53] ROSALES-GUZMÁN C, NDAGANO B, FORBES A. A review of complex vector light fields and their applications[J]. Journal of Optics, 20, 123001(2018).

    [54] MILIONE G, SZTUL H I, NOLAN D A et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 107, 053601(2011).

    [55] KOZAWA Y, SATO S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 30, 3063-3065(2005).

    [56] AHMED M A, VOSS A, VOGEL M M et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers[J]. Optics Letters, 32, 3272-3274(2007).

    [57] NAIDOO D, ROUX F S, DUDLEY A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).

    [58] NIZIEV V G, CHANG R S, NESTEROV A V. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Applied Optics, 45, 8393-8399(2006).

    [59] MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).

    [60] CHEN Hao, HAO Jingjing, ZHANG Baifu et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Optics Letters, 36, 3179-3181(2011).

    [61] MORENO I, DAVIS J A, HERNANDEZ T M et al. Complete polarization control of light from a liquid crystal spatial light modulator[J]. Optics Express, 20, 364-376(2012).

    [62] MALUENDA D, JUVELLS I, MARTÍNEZ-HERRERO R et al. Reconfigurable beams with arbitrary polarization and shape distributions at a given plane[J]. Optics Express, 21, 5432-5439(2013).

    [63] HAN Wei, YANG Yanfang, CHENG Wen et al. Vectorial optical field generator for the creation of arbitrarily complex fields[J]. Optics Express, 21, 20692-20706(2013).

    [64] LIU SHENG, QI SHUXIA, ZHANG YI et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 6, 228-233(2018).

    [65] GAO Yuan, CHEN Zhaozhong, DING Jianping et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams[J]. Applied Optics, 58, 6591-6596(2019).

    [66] LIU Danhua, ZHOU Changda, LU Peiyao et al. Generation of vector beams with different polarization singularities based on metasurfaces[J]. New Journal of Physics, 24, 043022(2022).

    [67] QI Shuxia, LIU Sheng, LI Peng et al. A method for fast and robustly measuring the state of polarization of arbitrary light beams based on Pancharatnam-Berry phase[J]. Journal of Applied Physics, 126, 133105(2019).

    [68] QI Shuxia, LIU Sheng, HAN Lei et al. Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light[J]. Science China Physics, Mechanics & Astronomy, 64, 1-8(2021).

    [69] KHAFAJI M A AL, CISOWSKI C M, JIMBROWN H et al. Single-shot characterization of vector beams by generalized measurements[J]. Optics Express, 30, 22396-22409(2022).

    [70] CHEN Ruishan, WANG Jinghao, ZHANG Xiaoqiang et al. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating[J]. Optics Letters, 43, 755-758(2018).

    [71] LIU Danhua, ZHOU Changda, LU Peiyao et al. Generation of vector beams with different polarization singularities based on metasurfaces[J]. New Journal of Physics, 24, 043022(2022).

    [72] WRÓBEL P, PNIEWSKI J, ANTOSIEWICZ T J et al. Focusing radially polarized light by a concentrically corrugated silver film without a hole[J]. Physical Review Letters, 102, 183902(2009).

    [73] WANG Xilin, CHEN Jing, LI Yongnan et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 105, 253602(2010).

    [74] HNATOVSKY C, SHVEDOV V, KROLIKOWSKI W et al. Revealing local field structure of focused ultrashort pulses[J]. Physical Review Letters, 106, 123901(2011).

    [75] BARREIRO J T, WEI T C, KWIAT P G. Remote preparation of single-photon “hybrid” entangled and vector-polarization states[J]. Physical Review Letters, 105, 030407(2010).

    [76] FORBES A, DE OLIVEIRA M, DENNIS M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).

    [77] ZHAN Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).

    [78] MARRUCCI L, KARIMI E, SLUSSARENKO S et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 13, 064001(2011).

    [79] RUBINSZTEIN-DUNLOP H, FORBES A, BERRY M V et al. Roadmap on structured light[J]. Journal of Optics, 19, 013001(2016).

    [80] CHEN Jian, WAN Chenhao, ZHAN Qiwen. Vectorial optical fields: recent advances and future prospects[J]. Science Bulletin, 63, 54-74(2018).

    [81] SHEN Yijie, WANG Xuejiao, XIE Zhenwei et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 1-29(2019).

    [82] RUCHI, SENTHILKUMARAN P, PAL S K. Phase singularities to polarization singularities[J]. International Journal of Optics, 2020, 2812803(2020).

    [83] WANG Qiang, TU Chenghou, LI Yongnan et al. Polarization singularities: progress, fundamental physics, and prospects[J]. APL Photonics, 6, 040901(2021).

    [84] WANG Jian, LIANG Yize. Generation and detection of structured light: a review[J]. Frontiers in Physics, 9, 688284(2021).

    [85] PAN Yue, DING Jianping, WANG Huitian. Manipulation on novel vector optical fields:introduction,advances and applications[J]. Acta Optica Sinica, 39, 0126001(2019).

    [86] CHEN Jian, ZHAN Qiwen. Tailoring laser focal fields with vectorial optical fields[J]. Acta Optics Sinica, 39, 0126002(2019).

    [87] ZHOU Yuan, LI Runze, YU Xianghua et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators (invited)[J]. Acta Photonica Sinica, 50, 1123001(2021).

    [88] ZHANG Li, LIANG Xinzhou, LIN Qian et al. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 50, 20210447(2021).

    [89] GAO Yuan, DING Jianping, WANG Huitian. Manipulation of multimodal vector optical fields in three-dimensional space (invited)[J]. Acta Photonica Sinica, 51, 0151101(2022).

    [90] KOMINIS I K, KORNACK T W, ALLRED J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).

    [91] BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).

    [92] TIERNEY T M, HOLMES N, MELLOR S et al. Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 199, 598-608(2019).

    [93] WIEMAN C, HÄNSCH T W. Doppler-free laser polarization spectroscopy[J]. Physical Review Letters, 36, 1170(1976).

    [94] ORON D, DUDOVICH N, SILBERBERG Y. Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy[J]. Physical Review Letters, 90, 213902(2003).

    [95] HARRIS M L, ADAMS C S, CORNISH S L et al. Polarization spectroscopy in rubidium and cesium[J]. Physical Review A, 73, 062509(2006).

    [96] KHITROVA G, BERMAN P R, SARGENT M. Theory of pump-probe spectroscopy[J]. Journal of the Optical Society of America B, 5, 160-170(1988).

    [97] CHEN Yingcheng, CHEN Yunwen, SU Jungjung et al. Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations[J]. Physical Review A, 63, 043808(2001).

    [98] FISCHER M C, WILSON J W, ROBLES F E et al. Invited review article: pump-probe microscopy[J]. Review of Scientific Instruments, 87, 031101(2016).

    [99] GALBÁCS G. A review of applications and experimental improvements related to diode laser atomic spectroscopy[J]. Applied Spectroscopy Reviews, 41, 259-303(2006).

    [100] NASIM H, JAMIL Y. Recent advancements in spectroscopy using tunable diode lasers[J]. Laser Physics Letters, 10, 043001(2013).

    [101] BEICA H C, WINTER S, MOK C et al. Laboratory courses on laser spectroscopy and atom trapping[J]. Atoms, 8, 25(2020).

    [102] JAU Y Y, WALKER T, HAPPER W[M]. Optically pumped atoms(2010).

    [103] AUZINSH M, BUDKER D, ROCHESTER S[M]. Optically polarized atoms: understanding light-atom interactions(2010).

    [104] FATEMI F K. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems[J]. Optics Express, 19, 25143-25150(2011).

    [105] NAKAYAMA S. Optical pumping effects in high resolution laser spectroscopy[J]. Physica Scripta, 1997, 64(1997).

    [106] YANG Xin, FANG Aiping, WANG Jinwen et al. Manipulating the transmission of vector beam with spatially polarized atomic ensemble[J]. Optics Express, 27, 3900-3908(2019).

    [107] LI Yunke, WANG Jinwen, YANG Xin et al. Controllable transmission of vector beams in dichroic medium[J]. Chinese Physics B, 28, 014205(2019).

    [108] WANG Jinwen, CHEN Yun, YANG Xin et al. Optically polarized selection in atomic vapor and its application in mapping the polarization distribution[J]. Journal of Physics Communications, 4, 015019(2020).

    [109] WANG Jinwen, YANG Xin, DOU Zhenghui et al. Directly extracting the authentic basis of cylindrical vector beams by a pump-probe technique in an atomic vapor[J]. Applied Physics Letters, 115, 221101(2019).

    [110] WANG Jinwen, YANG Xin, LI Yunke et al. Optically spatial information selection with hybridly polarized beam in atomic vapor[J]. Photonics Research, 6, 451-456(2018).

    [111] BUDKER D, GAWLIK W, KIMBALL D F et al. Resonant nonlinear magneto-optical effects in atoms[J]. Reviews of Modern Physics, 74, 1153(2002).

    [112] SHI Shuai, DING Dongsheng, ZHOU Zhiyuan et al. Magnetic-field-induced rotation of light with orbital angular momentum[J]. Applied Physics Letters, 106, 261110(2015).

    [113] STERN L, SZAPIRO A, TALKER E et al. Controlling the interactions of space-variant polarization beams with rubidium vapor using external magnetic fields[J]. Optics Express, 24, 4834-4841(2016).

    [114] ZHANG Liyun, YANG Yang, YANG Xin et al. Modulate the vector beams with magneto optic effect in atomic ensembles[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 155404(2020).

    [115] ALHASAN A M, FIUTAK J. Interference effects in the two-colour excitation of the sodium atom[J]. Radiation Physics & Chemistry, 68, 73-77(2003).

    [116] PRADHAN S, JAGATAP B N. Magnetoassisted pump-probe spectroscopy of cesium atoms[J]. Journal of the Optical Society of America B, 28, 398-405(2011).

    [117] GOZZINI S, FIORETTI A, LUCCHESINI A et al. Tunable and polarization-controlled high-contrast bright and dark coherent resonances in potassium[J]. Optics Letters, 42, 2930-2933(2017).

    [118] GHADERI GORAN ABAD M, MAHMOUDI M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation[J]. Scientific Reports, 11, 1-12(2021).

    [119] DALOI N, DEY T N. Vector beam polarization rotation control using resonant magneto optics[J]. Optics Express, 30, 21894-21905(2022).

    [120] BOLLER K J, IMAMOĞLU A, HARRIS S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593(1991).

    [121] BERGMANN K, THEUER H, SHORE B W. Coherent population transfer among quantum states of atoms and molecules[J]. Reviews of Modern Physics, 70, 1003(1998).

    [122] ALZETTA G, CARTALEVA S, DANCHEVA Y et al. Coherent effects on the Zeeman sublevels of hyperfine states at the D1 and D2 lines of Rb[J]. Journal of Optics B: Quantum and Semiclassical Optics, 3, 181(2001).

    [123] RADWELL N, CLARK T W, PICCIRILLO B et al. Spatially dependent electromagnetically induced transparency[J]. Physical Review Letters, 114, 123603(2015).

    [124] LIU C, DUTTON Z, BEHROOZI C H et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 409, 490-493(2001).

    [125] SUN Chao, CHEN Changshui, WEI Junxiong et al. Efficient three-process frequency conversion based on straddling stimulated Raman adiabatic passage[J]. IEEE Photonics Journal, 6, 1-10(2014).

    [126] CASTELLUCCI F, CLARK T W, SELYEM A et al. Atomic compass: detecting 3d magnetic field alignment with vector vortex light[J]. Physical Review Letters, 127, 233202(2021).

    [127] KARPA L, WEITZ M. A Stern–Gerlach experiment for slow light[J]. Nature Physics, 2, 332-335(2006).

    [128] XIAO Yanhong, KLEIN M, HOHENSEE M et al. Slow light beam splitter[J]. Physical Review Letters, 101, 043601(2008).

    [129] PENG Peng, CAO Wanxia, SHEN Ce et al. Anti-parity-time symmetry with flying atoms[J]. Nature Physics, 12, 1139-1145(2016).

    [130] PARIGI V, D’AMBROSIO V, ARNOLD C et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nature Communications, 6, 1-7(2015).

    [131] YE Yinghao, DONG Mingxin, YU Yichen et al. Experimental realization of optical storage of vector beams of light in warm atomic vapor[J]. Optics Letters, 44, 1528-1531(2019).

    [132] YANG Xin, CHEN Yun, WANG Jinwen et al. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor[J]. Optics Letters, 44, 2911-2914(2019).

    [133] BARREIRO S, TABOSA J W R, FAILACHE H et al. Spectroscopic observation of the rotational Doppler effect[J]. Physical Review Letters, 97, 113601(2006).

    [134] QIU Shuwei, WANG Jinwen, CASTELLUCCI F et al. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor[J]. Photonics Research, 9, 2325-2331(2021).

    [135] YANG Chen, ZHOU Zhiyuan, LI Yan et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop[J]. Optics Letters, 44, 219-222(2019).

    [136] LIU Haigang, LI Hui, ZHENG Yuanlin et al. Nonlinear frequency conversion and manipulation of vector beams[J]. Optics Letters, 43, 5981-5984(2018).

    [137] LI Hui, LIU Haigang, CHEN Xianfeng. Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer[J]. Applied Physics Letters, 114, 241901(2019).

    [138] LI Hui, LIU Haigang, CHEN Xianfeng. Dual waveband generator of perfect vector beams[J]. Photonics Research, 7, 1340-1344(2019).

    [139] ZHANG Li, QIU Xiaodong, LI Fangshu et al. Second harmonic generation with full Poincaré beams[J]. Optics Express, 26, 11678-11684(2018).

    [140] ZHANG Li, LIN Fei, QIU Xiaodong et al. Full vectorial feature of second-harmonic generation with full Poincaré beams[J]. Chinese Optics Letters, 17, 091901(2019).

    [141] WU Haijin, YANG Haoran, ROSALES-GUZMÁN C et al. Vectorial nonlinear optics: type-Ⅱ second-harmonic generation driven by spin-orbit-coupled fields[J]. Physical Review A, 100, 053840(2019).

    [142] WU Haijin, ZHAO Bo, ROSALES-GUZMÁN C et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light[J]. Physical Review Applied, 13, 064041(2020).

    [143] ZHONG Ruyue, ZHU Zhihan, WU Haijun et al. Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light[J]. Physical Review A, 103, 053520(2021).

    [144] KHOURY A Z, RIBEIRO P H S, DECHOUM K. Transfer of angular spectrum in parametric down-conversion with structured light[J]. Physical Review A, 102, 033708(2020).

    [145] SILVA B P DA, BUONO W T, PEREIRA L J et al. Spin to orbital angular momentum transfer in frequency up-conversion[J]. Nanophotonics, 11, 771-778(2022).

    [146] LOU Yanchao, CHENG Zimo, LIU Zhihong et al. Third-harmonic generation of spatially structured light in a quasi-periodically poled crystal[J]. Optica, 9, 183-186(2022).

    [147] WU Haijin, YU Bingshi, ZHU Zhihan et al. Conformal frequency conversion for arbitrary vectorial structured light[J]. Optica, 9, 187-196(2022).

    [148] WALKER G, ARNOLD A S, FRANKE-ARNOLD S. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor[J]. Physical Review Letters, 108, 243601(2012).

    [149] PAN Churong, YANG Chengdong, HU Huajie et al. Trans-spectral vector beam nonlinear conversion via parametric four-wave mixing in alkali vapor[J]. Optics Letters, 46, 5579-5582(2021).

    [150] BLIOKH K Y, RODRÍGUEZ-FORTUÑO F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).

    [151] CARDANO F, MARRUCCI L. Spin–orbit photonics[J]. Nature Photonics, 9, 776-778(2015).

    [152] YU Bingshi, WU Haijun, YANG Haoran et al. Full characterization of spin-orbit coupled photons via spatial-Stokes measurement[J]. arXiv preprint arXiv(2019).

    [153] HU Huajie, LUO Dajin, CHEN Haixia. Nonlinear frequency conversion of vector beams with four wave mixing in atomic vapor[J]. Applied Physics Letters, 115, 211101(2019).

    [154] JIAO Tengfei, CHENG Xuemei, ZHANG Qian et al. Multi-wave mixing using a single vector optical field[J]. Applied Physics Letters, 115, 201104(2019).

    [155] YUAN Jiaqi, CHENG Xuemei, WANG Xing et al. Single-scan polarization-resolved degenerate four-wave mixing spectroscopy using a vector optical field[J]. Photonics Research, 10, 230-236(2022).

    [156] CHIAO R Y, GARMIRE E, TOWNES C H. Self-trapping of optical beams[J]. Physical Review Letters, 13, 479(1964).

    [157] SNYDER A W, MITCHELL D J. Accessible solitons[J]. Science, 276, 1538-1541(1997).

    [158] PATWARDHAN G, GAO X, SAGIV A et al. Loss of polarization of elliptically polarized collapsing beams[J]. Physical Review A, 99, 033824(2019).

    [159] LI Simin, LI Yongnan, WANG Xilin et al. Taming the collapse of optical fields[J]. Scientific Reports, 2, 1-5(2012).

    [160] BOUCHARD F, LAROCQUE H, YAO A M et al. Polarization shaping for control of nonlinear propagation[J]. Physical Review Letters, 117, 233903(2016).

    [161] GIBSON C J, BEVINGTON P, OPPO G L et al. Control of polarization rotation in nonlinear propagation of fully structured light[J]. Physical Review A, 97, 033832(2018).

    [162] YAO A M, GIBSON C J, OPPO G L. Control of spatially rotating structures in diffractive Kerr cavities[J]. Optics Express, 27, 31273-31289(2019).

    [163] LUO Dajin, HU Huajie, PAN Churong et al. Nonlinear control of polarization rotation of hybrid-order vector vortex beams[J]. Journal of Optics, 22, 115612(2020).

    [164] HU Huajie, LUO Dajin, PAN Churong et al. Collapse of hybrid vector beam in Rb atomic vapor[J]. Optics Letters, 46, 2614-2617(2021).

    [165] BLACK A N, CHOUDHARY S, ARROYO-RIVERA E S et al. Suppression of nonlinear optical rogue wave formation using polarization-structured beams[J]. Physical Review Letter, 129, 133902(2022).

    [166] CHEN Jian, WAN Chenhao, CHONG Andy et al. Experimental demonstration of cylindrical vector spatiotemporal optical vortex[J]. Nanophotonics, 10, 4489-4495(2021).

    [167] ROSALES-GUZMÁN C, BHEBHE N, FORBES A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 25, 25697-25706(2017).

    [168] YAO Li, HU Xiaobo, PEREZ-GARCIA B et al. Classically entangled Ince-Gaussian modes[J]. Applied Physics Letters, 116, 221105(2020).

    [169] WANG Jinwen, CHEN Yun, KHAFAJI M AAL et al. Exploring the ellipticity dependency on vector helical Ince-Gaussian beams and their focusing properties[J]. Optics Express, 30, 24497-24506(2022).

    [170] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 82, 2313(2010).

    [171] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 012002(2019).

    [172] MADEIRA L, CIDRIM A, HEMMERLING M et al. Quantum turbulence in Bose-Einstein condensates: present status and new challenges ahead[J]. AVS Quantum Science, 2, 035901(2020).

    [173] DOWNES L A, MACkELLAR A R, WHITING D J et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 10, 011027(2020).

    [174] CHEN Shuying, REED D J, MACKELLAR A R et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 9, 485-491(2022).

    Tools

    Get Citation

    Copy Citation Text

    Xin YANG, Churong PAN, Yun CHEN, Jinwen WANG, Dong WEI, Hong GAO. Recent Progress on the Interaction between Vector Beams and Alkali Metal Atomic Medium(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1026001

    Download Citation

    EndNote(RIS)BibTexPlain Text
    Save article for my favorites
    Paper Information

    Category:

    Received: Jun. 30, 2022

    Accepted: Sep. 16, 2022

    Published Online: Nov. 30, 2022

    The Author Email: Dong WEI (weidong@xjtu.edu.cn), Hong GAO (honggao@xjtu.edu.cn)

    DOI:10.3788/gzxb20225110.1026001

    Topics