Acta Photonica Sinica, Volume. 51, Issue 10, 1026001(2022)
Recent Progress on the Interaction between Vector Beams and Alkali Metal Atomic Medium(Invited)
[1] WEISS R J. A brief history of light and those that lit the way[M]. World Scientific(1996).
[2] ZUBAIRY M S[M]. A very brief history of light, 3-24(2016).
[3] PLANCK M. Entropie und temperatur strahlender wärme[J]. Annalen der Physik, 306, 719-737(1900).
[4] EINSTEIN A. On a heuristic point of view concerning the production and transformation of light[J]. Annalen der Physik, 17, 1-18(1905).
[5] SUTER D[M]. The physics of laser-atom interactions(1997).
[6] BORN M, WOLF E[M]. Principles of optics: electromagnetic theory of propagation, interference and diffraction of light(2013).
[7] SCULLY M O, ZUBAIRY M S. Quantum optics[M]. American Association of Physics Teachers(1999).
[8] BOYD R W[M]. Nonlinear optics(2020).
[9] HECHT J. A short history of laser development[J]. Applied Optics, 49, F99-F122(2010).
[10] SCHIRBER M. Nobel Prize-lasers as tools[J]. Physics, 11, 100(2018).
[11] DUDLEY J M. Light, lasers, and the Nobel Prize[J]. Advanced Photonics, 2, 050501(2020).
[12] SIEGMAN A E[M]. Lasers(1986).
[13] ALLEN L, BEIJERSBERGEN M W, SPREEUW R J C et al. Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes[J]. Physical Review A, 45, 8185(1992).
[14] BANDRES M A, GUTIÉRREZ-VEGA J C. Ince-gaussian beams[J]. Optics Letters, 29, 144-146(2004).
[15] SNITZER E. Cylindrical dielectric waveguide modes[J]. Journal of the Optical Society of America, 51, 491-498(1961).
[16] HALL D G. Vector-beam solutions of Maxwell's wave equation[J]. Optics Letters, 21, 9-11(1996).
[17] MUSHIAKE Y, MATSUMURA K, NAKAJIMA N. Generation of radially polarized optical beam mode by laser oscillation[J]. Proceedings of the IEEE, 60, 1107-1109(1972).
[18] POHL D. Operation of a ruby laser in the purely transverse electric mode TE01[J]. Applied Physics Letters, 20, 266-267(1972).
[19] MARHIC M E, GARMIRE E. Low‐order TE0 q operation of a CO2 laser for transmission through circular metallic waveguides[J]. Applied Physics Letters, 38, 743-745(1981).
[20] TIDWELL S C, FORD D H, KIMURA W D. Generating radially polarized beams interferometrically[J]. Applied Optics, 29, 2234-2239(1990).
[21] TIDWELL S C, KIM G H, KIMURA W D. Efficient radially polarized laser beam generation with a double interferometer[J]. Applied Optics, 32, 5222-5229(1993).
[22] CHURIN E G, HOΒFELD J, TSCHUDI T. Polarization configurations with singular point formed by computer generated holograms[J]. Optics Communications, 99, 13-17(1993).
[23] JORDAN R H, HALL D G. Free-space azimuthal paraxial wave equation: the azimuthal Bessel–Gauss beam solution[J]. Optics Letters, 19, 427-429(1994).
[24] STALDER M, SCHADT M. Linearly polarized light with axial symmetry generated by liquid-crystal polarization converters[J]. Optics Letters, 21, 1948-1950(1996).
[25] YOUNGWORTH K S, BROWN T G. Focusing of high numerical aperture cylindrical-vector beams[J]. Optics Express, 7, 77-87(2000).
[26] BISS D P, BROWN T G. Cylindrical vector beam focusing through a dielectric interface[J]. Optics Express, 9, 490-497(2001).
[27] ZHAN Qiwen, LEGER J R. Focus shaping using cylindrical vector beams[J]. Optics Express, 10, 324-331(2002).
[28] WANG Haifeng, SHI Luping, LUKYANCHUK B et al. Creation of a needle of longitudinally polarized light in vacuum using binary optics[J]. Nature Photonics, 2, 501-505(2008).
[29] HAN Lei, QI Shuxia, LIU Sheng et al. Tightly focused light field with controllable pure transverse polarization state at the focus[J]. Optics Letters, 45, 6034-6037(2020).
[30] OTTE E, TEKCE K, DENZ C. Tailored intensity landscapes by tight focusing of singular vector beams[J]. Optics Express, 25, 20194-20201(2017).
[31] CHEN Yun, WANG Jinwen, PENG Zhou et al. Tailoring multi-singularity structure induced by a focused radially polarized beam[J]. Journal of the Optical Society of America A, 38, 419-425(2021).
[32] DORN R, QUABIS S, LEUCHS G. Sharper focus for a radially polarized light beam[J]. Physical Review Letters, 91, 233901(2003).
[33] MClAREN M, KONRAD T, FORBES A. Measuring the nonseparability of vector vortex beams[J]. Physical Review A, 92, 023833(2015).
[34] SHEN Yijie, ROSALES‐GUZMÁN C. Nonseparable states of light: from quantum to classical[J]. Laser & Photonics Reviews, 16, 2100533(2022).
[35] NDAGANO B, PEREZ-GARCIA B, ROUX F S et al. Characterizing quantum channels with non-separable states of classical light[J]. Nature Physics, 13, 397-402(2017).
[36] ERHARD M, KRENN M, ZEILINGER A. Advances in high-dimensional quantum entanglement[J]. Nature Reviews Physics, 2, 365-381(2020).
[37] ERHARD M, FICKLER R, KRENN M et al. Twisted photons: new quantum perspectives in high dimensions[J]. Light: Science & Applications, 7, 17146-17146(2018).
[38] NDAGANO B, NAPE I, COX M A et al. Creation and detection of vector vortex modes for classical and quantum communication[J]. Journal of Lightwave Technology, 36, 292-301(2018).
[39] MAO Dong, ZHENG Yang, ZENG Chao et al. Generation of polarization and phase singular beams in fibers and fiber lasers[J]. Advanced Photonics, 3, 014002(2021).
[40] OTTE E, DENZ C. Optical trapping gets structure: structured light for advanced optical manipulation[J]. Applied Physics Reviews, 7, 041308(2020).
[41] YANG Yuanjie, REN Yuxuan, CHEN Mingzhou et al. Optical trapping with structured light: a review[J]. Advanced Photonics, 3, 034001(2021).
[42] BAUTISTA G, KAURANEN M. Vector-field nonlinear microscopy of nanostructures[J]. ACS Photonics, 3, 1351-1370(2016).
[43] KOZAWA Y, SATO S. Small focal spot formation by vector beams[J]. Progress in Optics, 66, 35-90(2021).
[44] GU Bing, CAO Xi, RUI Guanghao et al. Vector beams excited nonlinear optical effects[J]. Journal of Nonlinear Optical Physics & Materials, 27, 1850045(2018).
[45] WANG Jinwen, CASTELLUCCI F, FRANKE-ARNOLD S. Vectorial light-matter interaction: exploring spatially structured complex light fields[J]. AVS Quantum Science, 2, 031702(2020).
[46] SLUSSARENKO S, PRYDE G J. Photonic quantum information processing: a concise review[J]. Applied Physics Reviews, 6, 041303(2019).
[47] FORBES A, NAPE I. Quantum mechanics with patterns of light: progress in high dimensional and multidimensional entanglement with structured light[J]. AVS Quantum Science, 1, 011701(2019).
[48] COZZOLINO D, DA LIO B, BACCO D et al. High‐dimensional quantum communication: benefits, progress, and future challenges[J]. Advanced Quantum Technologies, 2, 1900038(2019).
[49] DEGEN C L, REINHARD F, CAPPELLARO P. Quantum sensing[J]. Reviews of Modern Physics, 89, 035002(2017).
[50] POLINO E, VALERI M, SPAGNOLO N et al. Photonic quantum metrology[J]. AVS Quantum Science, 2, 024703(2020).
[51] KUTAS M, HAASE B E, RIEXINGER F et al. Quantum sensing with extreme light[J]. Advanced Quantum Technologies, 5, 2100164(2022).
[52] FITZGERALD G. M. Poincaré and Maxwell[J]. Nature, 45, 532-533(1892).
[53] ROSALES-GUZMÁN C, NDAGANO B, FORBES A. A review of complex vector light fields and their applications[J]. Journal of Optics, 20, 123001(2018).
[54] MILIONE G, SZTUL H I, NOLAN D A et al. Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light[J]. Physical Review Letters, 107, 053601(2011).
[55] KOZAWA Y, SATO S. Generation of a radially polarized laser beam by use of a conical Brewster prism[J]. Optics Letters, 30, 3063-3065(2005).
[56] AHMED M A, VOSS A, VOGEL M M et al. Multilayer polarizing grating mirror used for the generation of radial polarization in Yb: YAG thin-disk lasers[J]. Optics Letters, 32, 3272-3274(2007).
[57] NAIDOO D, ROUX F S, DUDLEY A et al. Controlled generation of higher-order Poincaré sphere beams from a laser[J]. Nature Photonics, 10, 327-332(2016).
[58] NIZIEV V G, CHANG R S, NESTEROV A V. Generation of inhomogeneously polarized laser beams by use of a Sagnac interferometer[J]. Applied Optics, 45, 8393-8399(2006).
[59] MARRUCCI L, MANZO C, PAPARO D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media[J]. Physical Review Letters, 96, 163905(2006).
[60] CHEN Hao, HAO Jingjing, ZHANG Baifu et al. Generation of vector beam with space-variant distribution of both polarization and phase[J]. Optics Letters, 36, 3179-3181(2011).
[61] MORENO I, DAVIS J A, HERNANDEZ T M et al. Complete polarization control of light from a liquid crystal spatial light modulator[J]. Optics Express, 20, 364-376(2012).
[62] MALUENDA D, JUVELLS I, MARTÍNEZ-HERRERO R et al. Reconfigurable beams with arbitrary polarization and shape distributions at a given plane[J]. Optics Express, 21, 5432-5439(2013).
[63] HAN Wei, YANG Yanfang, CHENG Wen et al. Vectorial optical field generator for the creation of arbitrarily complex fields[J]. Optics Express, 21, 20692-20706(2013).
[64] LIU SHENG, QI SHUXIA, ZHANG YI et al. Highly efficient generation of arbitrary vector beams with tunable polarization, phase, and amplitude[J]. Photonics Research, 6, 228-233(2018).
[65] GAO Yuan, CHEN Zhaozhong, DING Jianping et al. Single ultra-high-definition spatial light modulator enabling highly efficient generation of fully structured vector beams[J]. Applied Optics, 58, 6591-6596(2019).
[66] LIU Danhua, ZHOU Changda, LU Peiyao et al. Generation of vector beams with different polarization singularities based on metasurfaces[J]. New Journal of Physics, 24, 043022(2022).
[67] QI Shuxia, LIU Sheng, LI Peng et al. A method for fast and robustly measuring the state of polarization of arbitrary light beams based on Pancharatnam-Berry phase[J]. Journal of Applied Physics, 126, 133105(2019).
[68] QI Shuxia, LIU Sheng, HAN Lei et al. Dynamically measuring the holo-information of light fields in three-dimensional space using a periodic polarization-structured light[J]. Science China Physics, Mechanics & Astronomy, 64, 1-8(2021).
[69] KHAFAJI M A AL, CISOWSKI C M, JIMBROWN H et al. Single-shot characterization of vector beams by generalized measurements[J]. Optics Express, 30, 22396-22409(2022).
[70] CHEN Ruishan, WANG Jinghao, ZHANG Xiaoqiang et al. High efficiency all-fiber cylindrical vector beam laser using a long-period fiber grating[J]. Optics Letters, 43, 755-758(2018).
[71] LIU Danhua, ZHOU Changda, LU Peiyao et al. Generation of vector beams with different polarization singularities based on metasurfaces[J]. New Journal of Physics, 24, 043022(2022).
[72] WRÓBEL P, PNIEWSKI J, ANTOSIEWICZ T J et al. Focusing radially polarized light by a concentrically corrugated silver film without a hole[J]. Physical Review Letters, 102, 183902(2009).
[73] WANG Xilin, CHEN Jing, LI Yongnan et al. Optical orbital angular momentum from the curl of polarization[J]. Physical Review Letters, 105, 253602(2010).
[74] HNATOVSKY C, SHVEDOV V, KROLIKOWSKI W et al. Revealing local field structure of focused ultrashort pulses[J]. Physical Review Letters, 106, 123901(2011).
[75] BARREIRO J T, WEI T C, KWIAT P G. Remote preparation of single-photon “hybrid” entangled and vector-polarization states[J]. Physical Review Letters, 105, 030407(2010).
[76] FORBES A, DE OLIVEIRA M, DENNIS M R. Structured light[J]. Nature Photonics, 15, 253-262(2021).
[77] ZHAN Qiwen. Cylindrical vector beams: from mathematical concepts to applications[J]. Advances in Optics and Photonics, 1, 1-57(2009).
[78] MARRUCCI L, KARIMI E, SLUSSARENKO S et al. Spin-to-orbital conversion of the angular momentum of light and its classical and quantum applications[J]. Journal of Optics, 13, 064001(2011).
[79] RUBINSZTEIN-DUNLOP H, FORBES A, BERRY M V et al. Roadmap on structured light[J]. Journal of Optics, 19, 013001(2016).
[80] CHEN Jian, WAN Chenhao, ZHAN Qiwen. Vectorial optical fields: recent advances and future prospects[J]. Science Bulletin, 63, 54-74(2018).
[81] SHEN Yijie, WANG Xuejiao, XIE Zhenwei et al. Optical vortices 30 years on: OAM manipulation from topological charge to multiple singularities[J]. Light: Science & Applications, 8, 1-29(2019).
[82] RUCHI, SENTHILKUMARAN P, PAL S K. Phase singularities to polarization singularities[J]. International Journal of Optics, 2020, 2812803(2020).
[83] WANG Qiang, TU Chenghou, LI Yongnan et al. Polarization singularities: progress, fundamental physics, and prospects[J]. APL Photonics, 6, 040901(2021).
[84] WANG Jian, LIANG Yize. Generation and detection of structured light: a review[J]. Frontiers in Physics, 9, 688284(2021).
[85] PAN Yue, DING Jianping, WANG Huitian. Manipulation on novel vector optical fields:introduction,advances and applications[J]. Acta Optica Sinica, 39, 0126001(2019).
[86] CHEN Jian, ZHAN Qiwen. Tailoring laser focal fields with vectorial optical fields[J]. Acta Optics Sinica, 39, 0126002(2019).
[87] ZHOU Yuan, LI Runze, YU Xianghua et al. Progress in study and application of optical field modulation technology based on liquid crystal spatial light modulators (invited)[J]. Acta Photonica Sinica, 50, 1123001(2021).
[88] ZHANG Li, LIANG Xinzhou, LIN Qian et al. Research progress of hybrid vector beams (Invited)[J]. Infrared and Laser Engineering, 50, 20210447(2021).
[89] GAO Yuan, DING Jianping, WANG Huitian. Manipulation of multimodal vector optical fields in three-dimensional space (invited)[J]. Acta Photonica Sinica, 51, 0151101(2022).
[90] KOMINIS I K, KORNACK T W, ALLRED J C et al. A subfemtotesla multichannel atomic magnetometer[J]. Nature, 422, 596-599(2003).
[91] BUDKER D, ROMALIS M. Optical magnetometry[J]. Nature Physics, 3, 227-234(2007).
[92] TIERNEY T M, HOLMES N, MELLOR S et al. Optically pumped magnetometers: from quantum origins to multi-channel magnetoencephalography[J]. NeuroImage, 199, 598-608(2019).
[93] WIEMAN C, HÄNSCH T W. Doppler-free laser polarization spectroscopy[J]. Physical Review Letters, 36, 1170(1976).
[94] ORON D, DUDOVICH N, SILBERBERG Y. Femtosecond phase-and-polarization control for background-free coherent anti-Stokes Raman spectroscopy[J]. Physical Review Letters, 90, 213902(2003).
[95] HARRIS M L, ADAMS C S, CORNISH S L et al. Polarization spectroscopy in rubidium and cesium[J]. Physical Review A, 73, 062509(2006).
[96] KHITROVA G, BERMAN P R, SARGENT M. Theory of pump-probe spectroscopy[J]. Journal of the Optical Society of America B, 5, 160-170(1988).
[97] CHEN Yingcheng, CHEN Yunwen, SU Jungjung et al. Pump-probe spectroscopy of cold 87Rb atoms in various polarization configurations[J]. Physical Review A, 63, 043808(2001).
[98] FISCHER M C, WILSON J W, ROBLES F E et al. Invited review article: pump-probe microscopy[J]. Review of Scientific Instruments, 87, 031101(2016).
[99] GALBÁCS G. A review of applications and experimental improvements related to diode laser atomic spectroscopy[J]. Applied Spectroscopy Reviews, 41, 259-303(2006).
[100] NASIM H, JAMIL Y. Recent advancements in spectroscopy using tunable diode lasers[J]. Laser Physics Letters, 10, 043001(2013).
[101] BEICA H C, WINTER S, MOK C et al. Laboratory courses on laser spectroscopy and atom trapping[J]. Atoms, 8, 25(2020).
[102] JAU Y Y, WALKER T, HAPPER W[M]. Optically pumped atoms(2010).
[103] AUZINSH M, BUDKER D, ROCHESTER S[M]. Optically polarized atoms: understanding light-atom interactions(2010).
[104] FATEMI F K. Cylindrical vector beams for rapid polarization-dependent measurements in atomic systems[J]. Optics Express, 19, 25143-25150(2011).
[105] NAKAYAMA S. Optical pumping effects in high resolution laser spectroscopy[J]. Physica Scripta, 1997, 64(1997).
[106] YANG Xin, FANG Aiping, WANG Jinwen et al. Manipulating the transmission of vector beam with spatially polarized atomic ensemble[J]. Optics Express, 27, 3900-3908(2019).
[107] LI Yunke, WANG Jinwen, YANG Xin et al. Controllable transmission of vector beams in dichroic medium[J]. Chinese Physics B, 28, 014205(2019).
[108] WANG Jinwen, CHEN Yun, YANG Xin et al. Optically polarized selection in atomic vapor and its application in mapping the polarization distribution[J]. Journal of Physics Communications, 4, 015019(2020).
[109] WANG Jinwen, YANG Xin, DOU Zhenghui et al. Directly extracting the authentic basis of cylindrical vector beams by a pump-probe technique in an atomic vapor[J]. Applied Physics Letters, 115, 221101(2019).
[110] WANG Jinwen, YANG Xin, LI Yunke et al. Optically spatial information selection with hybridly polarized beam in atomic vapor[J]. Photonics Research, 6, 451-456(2018).
[111] BUDKER D, GAWLIK W, KIMBALL D F et al. Resonant nonlinear magneto-optical effects in atoms[J]. Reviews of Modern Physics, 74, 1153(2002).
[112] SHI Shuai, DING Dongsheng, ZHOU Zhiyuan et al. Magnetic-field-induced rotation of light with orbital angular momentum[J]. Applied Physics Letters, 106, 261110(2015).
[113] STERN L, SZAPIRO A, TALKER E et al. Controlling the interactions of space-variant polarization beams with rubidium vapor using external magnetic fields[J]. Optics Express, 24, 4834-4841(2016).
[114] ZHANG Liyun, YANG Yang, YANG Xin et al. Modulate the vector beams with magneto optic effect in atomic ensembles[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 155404(2020).
[115] ALHASAN A M, FIUTAK J. Interference effects in the two-colour excitation of the sodium atom[J]. Radiation Physics & Chemistry, 68, 73-77(2003).
[116] PRADHAN S, JAGATAP B N. Magnetoassisted pump-probe spectroscopy of cesium atoms[J]. Journal of the Optical Society of America B, 28, 398-405(2011).
[117] GOZZINI S, FIORETTI A, LUCCHESINI A et al. Tunable and polarization-controlled high-contrast bright and dark coherent resonances in potassium[J]. Optics Letters, 42, 2930-2933(2017).
[118] GHADERI GORAN ABAD M, MAHMOUDI M. Laguerre-Gaussian modes generated vector beam via nonlinear magneto-optical rotation[J]. Scientific Reports, 11, 1-12(2021).
[119] DALOI N, DEY T N. Vector beam polarization rotation control using resonant magneto optics[J]. Optics Express, 30, 21894-21905(2022).
[120] BOLLER K J, IMAMOĞLU A, HARRIS S E. Observation of electromagnetically induced transparency[J]. Physical Review Letters, 66, 2593(1991).
[121] BERGMANN K, THEUER H, SHORE B W. Coherent population transfer among quantum states of atoms and molecules[J]. Reviews of Modern Physics, 70, 1003(1998).
[122] ALZETTA G, CARTALEVA S, DANCHEVA Y et al. Coherent effects on the Zeeman sublevels of hyperfine states at the D1 and D2 lines of Rb[J]. Journal of Optics B: Quantum and Semiclassical Optics, 3, 181(2001).
[123] RADWELL N, CLARK T W, PICCIRILLO B et al. Spatially dependent electromagnetically induced transparency[J]. Physical Review Letters, 114, 123603(2015).
[124] LIU C, DUTTON Z, BEHROOZI C H et al. Observation of coherent optical information storage in an atomic medium using halted light pulses[J]. Nature, 409, 490-493(2001).
[125] SUN Chao, CHEN Changshui, WEI Junxiong et al. Efficient three-process frequency conversion based on straddling stimulated Raman adiabatic passage[J]. IEEE Photonics Journal, 6, 1-10(2014).
[126] CASTELLUCCI F, CLARK T W, SELYEM A et al. Atomic compass: detecting 3d magnetic field alignment with vector vortex light[J]. Physical Review Letters, 127, 233202(2021).
[127] KARPA L, WEITZ M. A Stern–Gerlach experiment for slow light[J]. Nature Physics, 2, 332-335(2006).
[128] XIAO Yanhong, KLEIN M, HOHENSEE M et al. Slow light beam splitter[J]. Physical Review Letters, 101, 043601(2008).
[129] PENG Peng, CAO Wanxia, SHEN Ce et al. Anti-parity-time symmetry with flying atoms[J]. Nature Physics, 12, 1139-1145(2016).
[130] PARIGI V, D’AMBROSIO V, ARNOLD C et al. Storage and retrieval of vector beams of light in a multiple-degree-of-freedom quantum memory[J]. Nature Communications, 6, 1-7(2015).
[131] YE Yinghao, DONG Mingxin, YU Yichen et al. Experimental realization of optical storage of vector beams of light in warm atomic vapor[J]. Optics Letters, 44, 1528-1531(2019).
[132] YANG Xin, CHEN Yun, WANG Jinwen et al. Observing quantum coherence induced transparency of hybrid vector beams in atomic vapor[J]. Optics Letters, 44, 2911-2914(2019).
[133] BARREIRO S, TABOSA J W R, FAILACHE H et al. Spectroscopic observation of the rotational Doppler effect[J]. Physical Review Letters, 97, 113601(2006).
[134] QIU Shuwei, WANG Jinwen, CASTELLUCCI F et al. Visualization of magnetic fields with cylindrical vector beams in a warm atomic vapor[J]. Photonics Research, 9, 2325-2331(2021).
[135] YANG Chen, ZHOU Zhiyuan, LI Yan et al. Nonlinear frequency conversion and manipulation of vector beams in a Sagnac loop[J]. Optics Letters, 44, 219-222(2019).
[136] LIU Haigang, LI Hui, ZHENG Yuanlin et al. Nonlinear frequency conversion and manipulation of vector beams[J]. Optics Letters, 43, 5981-5984(2018).
[137] LI Hui, LIU Haigang, CHEN Xianfeng. Nonlinear frequency conversion of vectorial optical fields with a Mach-Zehnder interferometer[J]. Applied Physics Letters, 114, 241901(2019).
[138] LI Hui, LIU Haigang, CHEN Xianfeng. Dual waveband generator of perfect vector beams[J]. Photonics Research, 7, 1340-1344(2019).
[139] ZHANG Li, QIU Xiaodong, LI Fangshu et al. Second harmonic generation with full Poincaré beams[J]. Optics Express, 26, 11678-11684(2018).
[140] ZHANG Li, LIN Fei, QIU Xiaodong et al. Full vectorial feature of second-harmonic generation with full Poincaré beams[J]. Chinese Optics Letters, 17, 091901(2019).
[141] WU Haijin, YANG Haoran, ROSALES-GUZMÁN C et al. Vectorial nonlinear optics: type-Ⅱ second-harmonic generation driven by spin-orbit-coupled fields[J]. Physical Review A, 100, 053840(2019).
[142] WU Haijin, ZHAO Bo, ROSALES-GUZMÁN C et al. Spatial-polarization-independent parametric up-conversion of vectorially structured light[J]. Physical Review Applied, 13, 064041(2020).
[143] ZHONG Ruyue, ZHU Zhihan, WU Haijun et al. Gouy-phase-mediated propagation variations and revivals of transverse structure in vectorially structured light[J]. Physical Review A, 103, 053520(2021).
[144] KHOURY A Z, RIBEIRO P H S, DECHOUM K. Transfer of angular spectrum in parametric down-conversion with structured light[J]. Physical Review A, 102, 033708(2020).
[145] SILVA B P DA, BUONO W T, PEREIRA L J et al. Spin to orbital angular momentum transfer in frequency up-conversion[J]. Nanophotonics, 11, 771-778(2022).
[146] LOU Yanchao, CHENG Zimo, LIU Zhihong et al. Third-harmonic generation of spatially structured light in a quasi-periodically poled crystal[J]. Optica, 9, 183-186(2022).
[147] WU Haijin, YU Bingshi, ZHU Zhihan et al. Conformal frequency conversion for arbitrary vectorial structured light[J]. Optica, 9, 187-196(2022).
[148] WALKER G, ARNOLD A S, FRANKE-ARNOLD S. Trans-spectral orbital angular momentum transfer via four-wave mixing in Rb vapor[J]. Physical Review Letters, 108, 243601(2012).
[149] PAN Churong, YANG Chengdong, HU Huajie et al. Trans-spectral vector beam nonlinear conversion via parametric four-wave mixing in alkali vapor[J]. Optics Letters, 46, 5579-5582(2021).
[150] BLIOKH K Y, RODRÍGUEZ-FORTUÑO F J, Nori F et al. Spin-orbit interactions of light[J]. Nature Photonics, 9, 796-808(2015).
[151] CARDANO F, MARRUCCI L. Spin–orbit photonics[J]. Nature Photonics, 9, 776-778(2015).
[152] YU Bingshi, WU Haijun, YANG Haoran et al. Full characterization of spin-orbit coupled photons via spatial-Stokes measurement[J]. arXiv preprint arXiv(2019).
[153] HU Huajie, LUO Dajin, CHEN Haixia. Nonlinear frequency conversion of vector beams with four wave mixing in atomic vapor[J]. Applied Physics Letters, 115, 211101(2019).
[154] JIAO Tengfei, CHENG Xuemei, ZHANG Qian et al. Multi-wave mixing using a single vector optical field[J]. Applied Physics Letters, 115, 201104(2019).
[155] YUAN Jiaqi, CHENG Xuemei, WANG Xing et al. Single-scan polarization-resolved degenerate four-wave mixing spectroscopy using a vector optical field[J]. Photonics Research, 10, 230-236(2022).
[156] CHIAO R Y, GARMIRE E, TOWNES C H. Self-trapping of optical beams[J]. Physical Review Letters, 13, 479(1964).
[157] SNYDER A W, MITCHELL D J. Accessible solitons[J]. Science, 276, 1538-1541(1997).
[158] PATWARDHAN G, GAO X, SAGIV A et al. Loss of polarization of elliptically polarized collapsing beams[J]. Physical Review A, 99, 033824(2019).
[159] LI Simin, LI Yongnan, WANG Xilin et al. Taming the collapse of optical fields[J]. Scientific Reports, 2, 1-5(2012).
[160] BOUCHARD F, LAROCQUE H, YAO A M et al. Polarization shaping for control of nonlinear propagation[J]. Physical Review Letters, 117, 233903(2016).
[161] GIBSON C J, BEVINGTON P, OPPO G L et al. Control of polarization rotation in nonlinear propagation of fully structured light[J]. Physical Review A, 97, 033832(2018).
[162] YAO A M, GIBSON C J, OPPO G L. Control of spatially rotating structures in diffractive Kerr cavities[J]. Optics Express, 27, 31273-31289(2019).
[163] LUO Dajin, HU Huajie, PAN Churong et al. Nonlinear control of polarization rotation of hybrid-order vector vortex beams[J]. Journal of Optics, 22, 115612(2020).
[164] HU Huajie, LUO Dajin, PAN Churong et al. Collapse of hybrid vector beam in Rb atomic vapor[J]. Optics Letters, 46, 2614-2617(2021).
[165] BLACK A N, CHOUDHARY S, ARROYO-RIVERA E S et al. Suppression of nonlinear optical rogue wave formation using polarization-structured beams[J]. Physical Review Letter, 129, 133902(2022).
[166] CHEN Jian, WAN Chenhao, CHONG Andy et al. Experimental demonstration of cylindrical vector spatiotemporal optical vortex[J]. Nanophotonics, 10, 4489-4495(2021).
[167] ROSALES-GUZMÁN C, BHEBHE N, FORBES A. Simultaneous generation of multiple vector beams on a single SLM[J]. Optics Express, 25, 25697-25706(2017).
[168] YAO Li, HU Xiaobo, PEREZ-GARCIA B et al. Classically entangled Ince-Gaussian modes[J]. Applied Physics Letters, 116, 221105(2020).
[169] WANG Jinwen, CHEN Yun, KHAFAJI M AAL et al. Exploring the ellipticity dependency on vector helical Ince-Gaussian beams and their focusing properties[J]. Optics Express, 30, 24497-24506(2022).
[170] SAFFMAN M, WALKER T G, MØLMER K. Quantum information with Rydberg atoms[J]. Reviews of Modern Physics, 82, 2313(2010).
[171] ADAMS C S, PRITCHARD J D, SHAFFER J P. Rydberg atom quantum technologies[J]. Journal of Physics B: Atomic, Molecular and Optical Physics, 53, 012002(2019).
[172] MADEIRA L, CIDRIM A, HEMMERLING M et al. Quantum turbulence in Bose-Einstein condensates: present status and new challenges ahead[J]. AVS Quantum Science, 2, 035901(2020).
[173] DOWNES L A, MACkELLAR A R, WHITING D J et al. Full-field terahertz imaging at kilohertz frame rates using atomic vapor[J]. Physical Review X, 10, 011027(2020).
[174] CHEN Shuying, REED D J, MACKELLAR A R et al. Terahertz electrometry via infrared spectroscopy of atomic vapor[J]. Optica, 9, 485-491(2022).
Get Citation
Copy Citation Text
Xin YANG, Churong PAN, Yun CHEN, Jinwen WANG, Dong WEI, Hong GAO. Recent Progress on the Interaction between Vector Beams and Alkali Metal Atomic Medium(Invited)[J]. Acta Photonica Sinica, 2022, 51(10): 1026001
Category:
Received: Jun. 30, 2022
Accepted: Sep. 16, 2022
Published Online: Nov. 30, 2022
The Author Email: Dong WEI (weidong@xjtu.edu.cn), Hong GAO (honggao@xjtu.edu.cn)