Infrared and Laser Engineering, Volume. 51, Issue 10, 20210763(2022)
Suppression of fiber modal noise by using deformable mirror
[1] Li Zheng, Huibo Wang, Wenlong Tian, et al. LD-pumped high-repetition-rate all-solid-state femtosecond lasers (Invited). Infrared and Laser Engineering, 49, 20201069(2020).
[2] Jinghua Sun, Kexiong Sun, Zhifang Lin, et al. High power high repetition rate femtosecond Ytterbium-doped fiber laser frequency comb(invited). Infrared and Laser Engineering, 48, 0103001(2019).
[3] R A Probst. A crucial test for astronomical spectrograph calibration with frequency combs. Nature Astronomy, 4, 603-608(2020).
[4] Liang Chang, Jujia Zhang, Liming Dou, et al. Study on the gain characteristics of optical fiber in astronomical instruments. Yunnan Keji Guanli, 28, 84(2015).
[5] [5] McCoy K S, Ramsey L, Mahadevan S, et al. Optical fiber modal noise in the 0.8 to 1.5 micron region implications f near infrared precision radial velocity measurements[C]Proceedings of SPIE, 2012, 8446: 8446J.
[6] S Mahadevan, S Halverson, L Ramsey, et al. Suppression of fiber modal noise induced radial velocity errors for bright emission-line calibration sources. Astrophysical Journal, 786, 18(2014).
[7] [7] Kokubo T, Mi T, Kurokawa T, et al. 12.5GHzspaced laser frequency comb covering Y, J, H bs f infrared Doppler instrument[C]Proceedings of SPIE, 2016, 9912: 99121R .
[8] [8] Sirk M M, Wishnow E H, Weisfeiler M, et al. A optical fiber double scrambler mechanical agitat system f the Keck pla finder spectrograph [C]Proceedings of SPIE, 2018, 10702: 107026F.
[9] R R Petersburg, T M Mccracken, D Eggerman, et al. Modal noise mitigation through fiber agitation for fiber-fed radial velocity spectrographs. Astrophysical Journal, 853, 181(2018).
[10] Cong Yang, Jian Han, Yuanjie Wu, et al. Theoretical and experimental study on suppression of speckle from a multimode optical fiber by dynamic scrambling. Laser & Optoelectronics Progress, 52, 090602(2015).
[11] [11] Xu L, Chang L, Wang X L, et al. A device method to improve the unifmity of laser output energy distribution: CN, 201710951229.7[P]. 20171226. (in Chinese)
[12] N A Roddier. Atmospheric wavefront simulation using Zernike polynomials. Optical Engineering, 29, 1174-1180(1990).
[13] F Pepe, S Cristiani, R Rebolo, et al. ESPRESSO at VLT: On-sky performance and first results. Astronomy & Astrophysics, 645, A96(2021).
[14] A J Metcalf, T Anderson, C F Bender, et al. Stellar spectroscopy in the near-infrared with a laser frequency comb. Optica, 6, 233-239(2019).
[15] T W Milbourne, R D Haywood, D F Phillips, et al. HARPS-N solar RVs are dominated by large, bright magnetic regions. The Astrophysical Journal, 874, 107(2019).
[16] R T Blackman, D A Fischer, C A Jurgenson, et al. Performance verification of the extreme precision spectrograph. The Astronomical Journal, 159, 1-30(2020).
[17] Z Hao, H Ye, J Han, et al. Calibration tests of a 25-GHz mode-spacing broadband astro-comb on the fiber-fed high resolution spectrograph (HRS) of the Chinese 2.16-m telescope. Publications of the Astronomical Society of the Pacific, 130, 125001(2018).
Get Citation
Copy Citation Text
Jiaqi Wang, Liang Xu, Liang Chang. Suppression of fiber modal noise by using deformable mirror[J]. Infrared and Laser Engineering, 2022, 51(10): 20210763
Category: Optical communication and sensing
Received: Jan. 20, 2022
Accepted: --
Published Online: Jan. 6, 2023
The Author Email: Xu Liang (xuliang@ynao.ac.cn)