Chinese Journal of Liquid Crystals and Displays, Volume. 36, Issue 10, 1341(2021)
Recent advances in synthesis and luminescent performance of environmental-friendly InP quantum dot
[1] [1] ROSSETTI R, NAKAHARA S, BRUS L E. Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution [J]. The Journal of Chemical Physics, 1983, 79(2): 1086-1088.
[2] [2] BRUS L E. Electron-electron and electron-hole interactions in small semiconductor crystallites: the size dependence of the lowest excited electronic state [J]. The Journal of Chemical Physics, 1984, 80(9): 4403-4409.
[3] [3] MICHALET X, PINAUD F F, BENTOLILA L A, et al. Quantum dots for live cells, in vivo imaging, and diagnostics [J]. Science, 2005, 307(5709): 538-544.
[4] [4] COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer [J]. Nature, 1994, 370(6488): 354-357.
[5] [5] KO D K, BROWN P R, BAWENDI M G, et al. p-i-n heterojunction solar cells with a colloidal quantum-dot absorber layer [J]. Advanced Materials, 2014, 26(28): 4845-4850.
[6] [6] PENG X G, SCHLAMP M C, KADAVANICH A V, et al. Epitaxial growth of highly luminescent CdSe/CdS core/shell nanocrystals with photostability and electronic accessibility [J]. Journal of the American Chemical Society, 1997, 119(30): 7019-7029.
[7] [7] HINES M A, GUYOT-SIONNEST P. Synthesis and characterization of strongly luminescing ZnS-capped CdSe nanocrystals [J]. Journal of Physical Chemistry, 1996, 100(2): 468-471.
[8] [8] LI J J, WANG Y A, GUO W Z, et al. Large-scale synthesis of nearly monodisperse CdSe/CdS core/shell nanocrystals using air-stable reagents via successive ion layer adsorption and reaction [J]. Journal of the American Chemical Society, 2003, 125(41): 12567-12575.
[9] [9] KIM Y, IPPEN C, GRECO T, et al. Semitransparent quantum dot light-emitting diodes by cadmium-free colloidal quantum dots [J]. Journal of Nanoscience and Nanotechnology, 2014, 14(11): 8636-8640.
[10] [10] REISS P, PROTIRE M, LI L. Core/shell semiconductor nanocrystals [J]. Small, 2009, 5(2): 154-168.
[11] [11] WOOD V, BULOVIC' V. Colloidal quantum dot light-emitting devices [J]. Nano Reviews, 2010, 1(1): 5202.
[12] [12] DAI X L, ZHANG Z X, JIN Y Z, et al. Solution-processed, high-performance light-emitting diodes based on quantum dots [J]. Nature, 2014, 515(7525): 96-99.
[13] [13] LI X Y, LIN Q L, SONG J J, et al. Quantum-dot light-emitting diodes for outdoor displays with high stability at high brightness [J]. Advanced Optical Materials, 2020, 8(2): 1901145.
[14] [14] WANG L S, LIN J, HU Y S, et al. Blue quantum dot light-emitting diodes with high electroluminescent efficiency [J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38755-38760.
[15] [15] PU C D, DAI X L, SHU Y F, et al. Electrochemically-stable ligands bridge the photoluminescence-electroluminescence gap of quantum dots [J]. Nature Communications, 2020, 11(1): 937.
[16] [16] WON Y H, CHO O, KIM T, et al. Highly efficient and stable InP/ZnSe/ZnS quantum dot light-emitting diodes [J]. Nature, 2019, 575(7784): 634-638.
[17] [17] SONG J J, WANG O Y, SHEN H B, et al. Over 30% external quantum efficiency light-emitting diodes by engineering quantum dot-assisted energy level match for hole transport layer [J]. Advanced Functional Materials, 2019, 29(33): 1808377.
[18] [18] KOLONEL L N. Association of cadmium with renal cancer [J]. Cancer, 1976, 37(4): 1782-1787.
[19] [19] JRUP L. Hazards of heavy metal contamination [J]. British Medical Bulletin, 2003, 68(1): 167-182.
[20] [20] GUZELIAN A A, KATARI J E B, KADAVANICH A V, et al. Synthesis of size-selected, surface-passivated InP nanocrystals [J]. The Journal of Chemical Physics, 1996, 100(17): 7212-7219.
[21] [21] MIC'IC', CHEONG H M, FU H, et al. Size-dependent spectroscopy of InP quantum dots [J]. Journal of Physical Chemistry B, 1997, 101(25): 4904-4912.
[22] [22] SUN H J, WU L, WEI W L, et al. Recent advances in graphene quantum dots for sensing [J]. Materials Today, 2013, 16(11): 433-442.
[23] [23] YUAN F L, WANG Z B, LI X H, et al. Bright multicolor bandgap fluorescent carbon quantum dots for electroluminescent light-emitting diodes [J]. Advanced Materials, 2017, 29(3): 1604436.
[24] [24] YUAN F L, YUAN T, SUI L Z, et al. Engineering triangular carbon quantum dots with unprecedented narrow bandwidth emission for multicolored LEDs [J]. Nature Communications, 2018, 9(1): 2249.
[25] [25] REIFSNYDER D C, YE X C, GORDON T R, et al. Three-dimensional self-assembly of chalcopyrite copper indium diselenide nanocrystals into oriented films [J]. ACS Nano, 2013, 7(5): 4307-4315.
[26] [26] PARK J P, LEE J J, KIM S W. Highly luminescent InP/GaP/ZnS QDs emitting in the entire color range via a heating up process [J]. Scientific Reports, 2016, 6(1): 30094.
[27] [27] SHEN H B, WANG H Z, LI X M, et al. Phosphine-free synthesis of high quality ZnSe, ZnSe/ZnS, and Cu-, Mn-doped ZnSe nanocrystals [J]. Dalton Transactions, 2009(47): 10534-10540.
[28] [28] JI W Y, JING P T, XU W, et al. High color purity ZnSe/ZnS core/shell quantum dot based blue light emitting diodes with an inverted device structure [J]. Applied Physics Letters, 2013, 103(5): 053106.
[29] [29] BATTAGLIA D, PENG X G. Formation of high quality InP and InAs nanocrystals in a noncoordinating solvent [J]. Nano Letters, 2002, 2(9): 1027-1030.
[30] [30] LI L, REISS P. One-pot synthesis of highly luminescent InP/ZnS nanocrystals without precursor injection [J]. Journal of the American Chemical Society, 2008, 130(35): 11588-11589.
[31] [31] PARK J, KIM S, KIM S, et al. Fabrication of highly luminescent InP/Cd and InP/CdS quantum dots [J]. Journal of Luminescence, 2010, 130(10): 1825-1828.
[32] [32] CHEN B, LI D Y, WANG F. InP quantum dots: synthesis and lighting applications [J]. Small, 2020, 16(32): 2002454.
[33] [33] LUCEY D W, MACRAE D J, FURIS M, et al. Monodispersed InP quantum dots prepared by colloidal chemistry in a noncoordinating solvent [J]. Chemistry of Materials, 2005, 17(14): 3754-3762.
[34] [34] VANEMBDEN J, CHESMAN A S R, JASIENIAK J J. The heat-up synthesis of colloidal nanocrystals [J]. Chemistry of Materials, 2015, 27(7): 2246-2285.
[35] [35] KOH S, EOM T, KIM W D, et al. Zinc-phosphorus complex working as an atomic valve for colloidal growth of monodisperse indium phosphide quantum dots [J]. Chemistry of Materials, 2017, 29(15): 6346-6355.
[36] [36] RAMASAMY P, KO K J, KANG J W, et al. Two-step “seed-mediated” synthetic approach to colloidal indium phosphide quantum dots with high-purity photo- and electroluminescence [J]. Chemistry of Materials, 2018, 30(11): 3643-3647.
[37] [37] BEBERWYCK B J, ALIVISATOS A P. Ion exchange synthesis of III-V nanocrystals [J]. Journal of the American Chemical Society, 2012, 134(49): 19977-19980.
[38] [38] STEIMLE B C, FENTON J L, SCHAAK R E. Rational construction of a scalable heterostructured nanorod megalibrary [J]. Science, 2020, 367(6476): 418-424.
[39] [39] ASHLEY B, VAKIL P N, LYNCH B B, et al. Microwave enhancement of autocatalytic growth of nanometals [J]. ACS Nano, 2017, 11(10): 9957-9967.
[40] [40] PAN Q, HU H C, ZOU Y T, et al. Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X = Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes [J]. Journal of Materials Chemistry C, 2017, 5(42): 10947-10954.
[41] [41] LI Y X, HUANG H, XIONG Y, et al. Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed-down microwave-assisted synthesis [J]. Angewandte Chemie International Edition, 2018, 57(20): 5833-5837.
[42] [42] LI Y, HOU X Q, DAI X L, et al. Stoichiometry-controlled InP-based quantum dots: synthesis, photoluminescence, and electroluminescence [J]. Journal of the American Chemical Society, 2019, 141(16): 6448-6452.
[43] [43] CAO F, ZHAO D W, SHEN P Y, et al. High-efficiency, solution-processed white quantum dot light-emitting diodes with serially stacked red/green/blue units [J]. Advanced Optical Materials, 2018, 6(20): 1800652.
[44] [44] PU C D, QIN H Y, GAO Y, et al. Synthetic control of exciton behavior in colloidal quantum dots [J]. Journal of the American Chemical Society, 2017, 139(9): 3302-3311.
[45] [45] LI Z H, HU Y X, SHEN H B, et al. Efficient and long-life green light-emitting diodes comprising tridentate thiol capped quantum dots [J]. Laser & Photonics Reviews, 2017, 11(1): 1600227.
[46] [46] ZHANG H, MA X Y, LIN Q L, et al. High-brightness blue InP quantum dot-based electroluminescent devices: the role of shell thickness [J]. The Journal of Physical Chemistry Letters, 2020, 11(3): 960-967.
[49] [49] SIRAMDAS R, MCLAURIN E J. InP nanocrystals with color-tunable luminescence by microwave-assisted ionic-liquid etching [J]. Chemistry of Materials, 2017, 29(5): 2101-2109.
[50] [50] KIM T G, ZHEREBETSKYY D, BEKENSTEIN Y, et al. Trap passivation in indium-based quantum dots through surface fluorination: mechanism and applications [J]. ACS Nano, 2018, 12(11): 11529-11540.
[51] [51] MIC'IC', AHRENKIEL S P, NOZIK A J. Synthesis of extremely small InP quantum dots and electronic coupling in their disordered solid films [J]. Applied Physics Letters, 2001, 78(25): 4022-4024.
[52] [52] TALAPIN D V, ROGACH A L, MEKIS I, et al. Synthesis and surface modification of amino-stabilized CdSe, CdTe and InP nanocrystals [J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2002, 202(2/3): 145-154.
[53] [53] WU Z H, LIU P, ZHANG W D, et al. Development of InP quantum dot-based light-emitting diodes [J]. ACS Energy Letters, 2020, 5(4): 1095-1106.
[54] [54] HAUBOLD S, HAASE M, KORNOWSKI A, et al. Strongly luminescent InP/ZnS core-shell nanoparticles [J]. ChemPhysChem, 2001, 2(5): 331-334.
[57] [57] ZHANG W D, ZHUANG W D, LIU R H, et al. Double-shelled InP/ZnMnS/ZnS quantum dots for light-emitting devices [J]. ACS Omega, 2019, 4(21): 18961-18968.
[58] [58] ZHANG H, HU N, ZENG Z P, et al. High-efficiency green InP quantum dot-based electroluminescent device comprising thick-shell quantum dots [J]. Advanced Optical Materials, 2019, 7(7): 1801602.
[59] [59] SHEN W, TANG H Y, YANG X L, et al. Synthesis of highly fluorescent InP/ZnS small-core/thick-shell tetrahedral-shaped quantum dots for blue light-emitting diodes [J]. Journal of Materials Chemistry C, 2017, 5(32): 8243-8249.
[60] [60] QIDWAI A A, WOODS J. Defect levels in indium and gallium doped zinc selenide [J]. Journal of Crystal Growth, 1982, 59(1/2): 217-222.
[61] [61] MOON Y, SI S, YOON E, et al. Low temperature photoluminescence characteristics of Zn-doped InP grown by metalorganic chemical vapor deposition [J]. Journal of Applied Physics, 1998, 83(4): 2261-2265.
[62] [62] MOCATTA D, COHEN G, SCHATTNER J, et al. Heavily doped semiconductor nanocrystal quantum dots [J]. Science, 2011, 332(6025): 77-81.
[63] [63] BOZYIGIT D, YAREMA O, WOOD V. Origins of low quantum efficiencies in quantum dot LEDs [J]. Advanced Functional Materials, 2013, 23(24): 3024-3029.
[64] [64] SHIRASAKI Y, SUPRAN G J, TISDALE W A, et al. Origin of efficiency roll-off in colloidal quantum-dot light-emitting diodes [J]. Physical Review Letters, 2013, 110(21): 217403.
[65] [65] LIM J, PARK M, BAE W K, et al. Highly efficient cadmium-free quantum dot light-emitting diodes enabled by the direct formation of excitons within InP@ZnSeS quantum dots [J]. ACS Nano, 2013, 7(10): 9019-9026.
[66] [66] ZHANG W D, DING S H, ZHUANG W D, et al. InP/ZnS/ZnS core/shell blue quantum dots for efficient light-emitting diodes [J]. Advanced Functional Materials, 2020, 30(49): 2005303.
[67] [67] ZHANG B B, LUO Y, MAI C H, et al. Effects of ZnMgO electron transport layer on the performance of InP-based inverted quantum dot light-emitting diodes [J]. Nanomaterials, 2021, 11(5): 1246.
Get Citation
Copy Citation Text
WANG Pu, CAI Ping, ZHANG Xiao-wen, XU wei, ZHANG Guan-guang, YAO Ri-hui, NING Hong-long, ZHENG Hua. Recent advances in synthesis and luminescent performance of environmental-friendly InP quantum dot[J]. Chinese Journal of Liquid Crystals and Displays, 2021, 36(10): 1341
Category:
Received: Jul. 20, 2021
Accepted: --
Published Online: Nov. 6, 2021
The Author Email: